
ECE 531 – Advanced Operating
Systems

Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 October 2025



Announcements

• HW#6 will be posted next week

• Ask if planning on going to ECE career fair

consensus is we should cancel class Wednesday

• Project was posted. Topics due 5 November

the PDF handout has past project examples

1



HW#6 Preview

• There are some major code changes building up to

getting multitasking going

• Userspace is split off into its own directory

• This lecture is about what changed and also some of the

concepts behind what’s going on with the updated code

2



Processes

• Meant to have you do more work on the scheduling

side. Getting A/B working is always a huge milestone in

making your own OS

• Took me weeks the first time, thought I could simplify

it down. But no, still a huge mass of assembly and

had trouble sorting it out (lack of comments and code 2

years old!)

• Each process has a structure that holds info on it, plus

the save state.

3



Process Control Blocks

• Each process has some sort of process control block

structure that holds all the info in a process

• There is a “processes” linked list that can be iterated by

the OS to find processes

◦ The scheduler will do this

◦ The OS might have other reasons to look for a process

struct (killing it, etc)

4



Process Control Structure

Here are the things you might find in a PCB, others are

possible. This list is from vmwOS

• Saved State

◦ Register saved state (for context switch, r0..r15, spsr)

◦ Kernel saved state (maybe needed to restart process

blocking in I/O)

• Linked list pointers (note, fancy kernels might use better

data structs)

◦ Next/Prev Process linked list pointers

5



◦ Waitqueue linked list pointer

• Process info

◦ status (valid/running)

◦ time accounting (user/kernel)

◦ pid – process id

◦ name – for printing

• Parent info

◦ exit value, parent pointer – when program ends it

needs to stick around until parent acknowledges it and

gets the exit value

• Memory info – useful for virtual memory during page

6



faults

◦ stack pointer, size

◦ text pointer, size

◦ data pointer, size

◦ bss pointer, size

• Open file info

◦ open files array

◦ current working directory

7



Open Files Array

• Each process tracks its open files

• Indexed via the filedescriptor

• This is UNIX/Linux so “everything is a file”

• Offset/inode/count/flags/name

• Also VFS struct with function pointers to the driver

responsible for I/O

◦ read()

◦ write()

◦ llseek()

8



◦ getdents()

◦ ioctl()

◦ open()

9



What does the Linux PCB look like?

TODO

10



Userspace/Executables

• Entering into userspace for first time is a pain.

• Previous homework just called a function and treated as

an exe, but that a bit of a hack.

• So had to implement executables (right now, bare

code/data blob. A problem as working on HW#7

issue with BSS not actually being allocated so program

crashes) Working on bFLT support.

11



Filesystem

• With many executables, they need a place for them to

live

• Set up a simple ramdisk (storage that looks like disk but

lives in RAM)

• This will be loaded along with the kernel at boot (to

save the trouble of having to write a disk or SD card

driver yet)

• The filesystem we use is the “romfs” one from Linux

(we’ll learn more about filesystems in a few weeks)

12



Fork/Exec

• How do executables start?

• We already discussed Unix fork/exec

• It turns out a true fork is a lot easier with virtual memory

(we haven’t learned about that yet)

13



vfork()

• There’s a stripped-down version of fork called vfork()

• As soon as you fork, the parent goes to sleep and the

child is running inside the parent and the *only* thing

the child it is allowed to do is either call exec() or exit()

(not even plain exit() as that would exit the parent

14



exec()

• We use execve() to launch the program

• you pass in the program you want to run, as well as the

command line arguments

• It loads from disk the executable, allocates memory, sets

up the process, marks as ready to run.

15



Scheduler

• How does the scheduler work?

• Simple, nothing fancy. There’s a doubly linked-list of all

processes and when a timer interrupt happens the list is

walked to find the next one that’s runnable.

• What if none available? Then run the idle thread.

16



Idle Thread

• Instead of busy-waiting when nothing wants to run, run

idle thread

• Process 0 on Linux/UNIX

• Can do background tasks

• Also can just go to low-power mode (wfi on ARM, hlt

on x86)

• We need to create and launch this as a kernel thread

though and have the scheduler run it when appropriate

17



Waitqueues

• Also implements wait queues. If you are sleeping

(because of a vfork) or waiting on I/O (waiting for

keypress) you get put to sleep and put on a linked-list

waitqueue. Then when I/O comes in, you are woken up,

removed from the queue, and marked as ready.

• This is tricky as in theory you are sort of sleeping in the

kernel and that’s how we implement it, so we need to

save our kernel register state as well as the user space.

There’s probably better ways to do this.

18



Wait Queue

• There is often separate waitqueue linked lists that can

hold everything waiting on a certain kind of I/O

• The process itself doesn’t move, it just is added/removed

from these lists as needed

• Often waitqueue is per device, so you’ll have a serial

one, a disk one, a network one, etc

19



Wait Queue Example – Console Code
(vmwos)

• your code read(stdin,buffer,size)

• syscall looks up file descriptor, sees fd maps to console

• calls console read()

• console driver has a buffer that gets filled in the

background by serial port data

◦ if more data avail then requested, return that many

bytes

◦ if less data avail then requested, return all available

20



◦ if no data available, put on waitqueue for console data

• next time serial port sends more data to console, it will

put in buffer, but also wake up everyone in waitqueue

• that marks each process is READY and then removes all

from queue

21



Linux Waitqueues

• https://lwn.net/Articles/577370/

• Linux had simple waitqueue implementation

• Mindcraft Linux performance issues vs other oses in late

90s

• “Thundering Herd” problem, you wake up all sleeping

processes on waitqueue, they all wake and try to take

action, but only enough input for one and have to put

to sleep again

• They added a lot of code to avoid this

22



• Turns out they overdid it, and so were looking to back

out and go simple again and only have complex in cases

that need it.

23



Waitpid

• In UNIX like operating systems once you have children

via fork, if they die they don’t go away. zombies. You

can wait using waitpid() to see when they die, and once

you use waitpid they are finally freed.

• So how do you wait in the background like in the HW?

Had to implement waitpid(NOHANG) which means

check to see if any children have died. If not, continue.

Otherwise handle them so they can die.

• So in the shell after every command is typed it does a

24



waitpid(NOHANG) to see if any of the background tasks

finished.

25



Final HW#6 Notes

• Might be delayed posting, issues with previous years code

• Will involve getting multitasking running

• Will involve looking at scheduler

• Will involve modifying the kernel memory allocator

26



Virtual Memory

See next lecture for virtual memory notes

27


