ECE 531 — Advanced Operating

Systems
Lecture 19

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

17 October 2025



Announcements

o HW=#6 will be posted next week

e Ask if planning on going to ECE career fair
consensus Is we should cancel class Wednesday

e Project was posted. Topics due 5 November
the PDF handout has past project examples



HW=+#6 Preview

e There are some major code changes building up to
getting multitasking going

e Userspace is split off into its own directory

e This lecture is about what changed and also some of the
concepts behind what's going on with the updated code



Processes

e Meant to have you do more work on the scheduling
side. Getting A/B working is always a huge milestone in
making your own OS

e Took me weeks the first time, thought | could simplify
it down. But no, still a huge mass of assembly and
had trouble sorting it out (lack of comments and code 2
years old!)

e Each process has a structure that holds info on it, plus
the save state.

-y 3



Process Control Blocks

e Each process has some sort of process control block
structure that holds all the info in a process

e Thereisa “processes’ linked list that can be iterated by
the OS to find processes

o [he scheduler will do this

o The OS might have other reasons to look for a process
struct (killing it, etc)




Process Control Structure

Here are the things you might find in a PCB, others are
possible. This list is from vmwOS

e Saved State
o Register saved state (for context switch, r0..r15, spsr)
o Kernel saved state (maybe needed to restart process
blocking in 1/0)
e Linked list pointers (note, fancy kernels might use better
data structs)
o Next/Prev Process linked list pointers

-y 5



o Waitqueue linked list pointer
e Process info
o status (valid/running)
o time accounting (user/kernel)
o pid — process id
o name — for printing
e Parent info
o exit value, parent pointer — when program ends it
needs to stick around until parent acknowledges it and
gets the exit value
e Memory info — useful for virtual memory during page

-y 6



faults

o stack pointer, size

o text pointer, size

o data pointer, size

o bss pointer, size

Open file info

o open_files array

o current working directory



Open Files Array

e Each process tracks its open files
e Indexed via the filedescriptor
e This is UNIX/Linux so “everything is a file"
e Offset/inode/count/flags/name
e Also VFS struct with function pointers to the driver
responsible for 1/0
o read()
o write()
o llseek()

-y 8



o getdents()
o ioctl()

o open()



What does the Linux PCB look like?
TODO

10



Userspace/Executables

e Entering into userspace for first time is a pain.

e Previous homework just called a function and treated as
an exe, but that a bit of a hack.

e So had to implement executables (right now, bare
code/data blob. A problem as working on HW#7
issue with BSS not actually being allocated so program
crashes) Working on bFLT support.

/Y 11



Filesystem

e With many executables, they need a place for them to
live

e Set up a simple ramdisk (storage that looks like disk but
lives in RAM)

e This will be loaded along with the kernel at boot (to
save the trouble of having to write a disk or SD card
driver yet)

e The filesystem we use is the “romfs” one from Linux
(we'll learn more about filesystems in a few weeks)

/Y 12



Fork /Exec

e How do executables start?

e We already discussed Unix fork /exec

e It turns out a true fork is a lot easier with virtual memory
(we haven't learned about that yet)

-y 13



vfork()

e There's a stripped-down version of fork called vfork ()

e As soon as you fork, the parent goes to sleep and the
child is running inside the parent and the *only* thing
the child it is allowed to do is either call exec() or _exit()
(not even plain exit() as that would exit the parent

-y 14



exec()

e \We use execve() to launch the program

e you pass In the program you want to run, as well as the
command line arguments

e It loads from disk the executable, allocates memory, sets
up the process, marks as ready to run.

-y 15



Scheduler

e How does the scheduler work?

e Simple, nothing fancy. There's a doubly
processes and when a timer interrupt ha
walked to find the next one that's runna

e \What if none available? Then run the id

linked-list of all
ppens the list Is
ole.

e thread.

16



Idle Thread

e Instead of busy-waiting when nothing wants to run, run
idle thread

e Process 0 on Linux/UNIX

e Can do background tasks

e Also can just go to low-power mode (wfi on ARM, hlt
on x86)

e We need to create and launch this as a kernel thread
though and have the scheduler run it when appropriate

-y 17



Waitqueues

e Also implements wait queues. If you are sleeping
(because of a vfork) or waiting on 1/O (waiting for
keypress) you get put to sleep and put on a linked-list
waitqueue. Then when |/O comes in, you are woken up,
removed from the queue, and marked as ready.

e This is tricky as in theory you are sort of sleeping in the
kernel and that's how we implement it, so we need to
save our kernel register state as well as the user space.
There's probably better ways to do this.

-y 18



Wait Queue

e There is often separate waitqueue linked lists that can
hold everything waiting on a certain kind of 1/0

e The process itself doesn't move, it just is added /removed
from these lists as needed

e Often waitqueue is per device, so you'll have a serial
one, a disk one, a network one, etc

-y 19



Wait Queue Example — Console Code
(vmwos)

e your code read(stdin,buffer,size)
e syscall looks up file descriptor, sees fd maps to console
e calls console_read ()
e console driver has a buffer that gets filled in the
background by serial port data
o if more data avail then requested, return that many
bytes
o if less data avail then requested, return all available

/Y 20



o if no data available, put on waitqueue for console data
e next time serial port sends more data to console, it will
put in buffer, but also wake up everyone in waitqueue
e that marks each process is READY and then removes all
from queue

/Y 21



Linux Waitqueues

e https://lwn.net/Articles/577370/

e Linux had simple waitqueue implementation

e Mindcraft Linux performance issues vs other oses in late
90s

e "Thundering Herd" problem, you wake up all sleeping
processes on waitqueue, they all wake and try to take
action, but only enough input for one and have to put
to sleep again

e They added a lot of code to avoid this

-y 2



e Turns out they overdid it, and so were looking to back
out and go simple again and only have complex in cases
that need it.

/Y 23



Waitpid

e In UNIX like operating systems once you have children
via fork, if they die they don't go away. zombies. You
can wait using waitpid() to see when they die, and once
you use waitpid they are finally freed.

e So how do you wait in the background like in the HW?
Had to implement waitpid(NOHANG) which means
check to see if any children have died. If not, continue.
Otherwise handle them so they can die.

e So in the shell after every command is typed it does a

24



waitpid(NOHANG) to see if any of the background tasks
finished.

-y 25



Final HW#6 Notes

e Might be delayed posting, issues with previous years code
e Will involve getting multitasking running

e Will involve looking at scheduler

e Will involve modifying the kernel memory allocator

-y 26



Virtual Memory

See next lecture for virtual memory notes

27



