
ECE 531 – Advanced Operating
Systems

Lecture 20

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 October 2025



Announcements

• HW#5 still being graded

• Midterms still being graded

• HW#6 will be posted

1



Virtual Memory

• In the early days of computing RAM was an extremely

limited resource

• Could you give the illusion of more RAM by swapping

RAM to/from disk?

• Can manually do this in software (overlays) but could

HW/OS do this transparently for you?

• Despite the complexity, was implemented in the 1960s

• Pretty much all modern CPUs and OSes support this

• It enables many other features too

2



Virtual Memory in ECE Classes

• ECE471 (embedded) – mention it, to differentiate bare

metal vs OS layout

• ECE574 (cluster computing) – mention it, has some

performance implications

• ECE571 (advanced processors) – look at it in detail as

modern memory / cache behavior tightly tied to it

• ECE531 (operating systems) – we are the OS, our job

to run it all so we actually have to understand it

3



Virtual Memory – High Level

• Computer programs see a fake/virtual view of memory

• This memory is split up into chunks called pages

• A translation layer is set up that translates virtual pages

to the actual physical pages of RAM

• Every single load and store from your program passes

through this translation layer

4



Virtual to Physical Mapping Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Physical RAM

0x0000 0000

0x0000 1000

0x0000 2000

0x0000 00000x0000 0000

0x0001 00000x0001 0000

0xc000 00000xc000 0000

0xffff f0000xffff f000

0x0000 3000

0x1fff e000

0x1fff f000

...

Process 1
(virtual address space)

Process 2
(virtual address space)

5



Notes on Previous Diagram

• Physical RAM can be much smaller than Virtual (in this

example, 512MB vs 4GB)

• Everything lives in Physical RAM, it’s only given the

illusion that virtual memory exists because the CPU

translates the virtual address pointers to physical on-

the-fly

• Each process can use the same identical virtual addresses,

they don’t conflict because behind the scenes they map

to separate physical addresses

6



Physical Memory Downsides

• Never enough memory

• No memory protection between programs

• Memory fragmentation

• Programs need to be PIC (position independent code)

• Programs need to be totally loaded into memory before

execution, stack fixed size

7



Virtual Memory Upsides

• Give the illusion of more memory than available, with

disk as backing store.

• Memory protection

• Give illusion of contiguous memory to avoid

fragmentation

• Demand paging (no swapping out whole processes), only

load parts of programs as needed

• Give each process own linear view of memory.

8



Virtual Memory Downsides

• Complicated hardware/software

• Potentially slower, lots of indirection on every memory

access

• If run out of physical memory can end up swap storm,

machine unusable

9



Memory Management Unit

• In very old days was a separate (optional!) chip

• Can run run OS without an MMU?

◦ There’s MMU-less Linux (uclinux)

◦ How do you keep processes separate? Very carefully...

10



Page Lookup

• Simplest would just be a table, with virtual page as index

and physical page as value

• Ends up being more complex than this

11



Page Tables – Hold Virt/Phys Mappings

• Collection of Page Table Entries (PTE)

• Some common components: (TODO: look up actual

values on ARM/Linux)

◦ ID of owner

◦ Virtual Page Number

◦ valid bit

◦ location of page (memory, disk, etc)

◦ protection info (read only, etc)

◦ page is dirty, age (how recent updated, for LRU)

12



Page Table Encoding

• If 4k pages, bottom 12 bits of mappings unused

• Could you squeeze all the PTE info in those bits?

• Can be complex, ARM32 and ARM64 have really

complicated page table setups

13



Page Table Issues – Size

• With 4GB memory and 4kB pages, you have 1 Million

pages per process.

• With 4-byte PTE then 4MB of page tables per-process.

Too big.

(or it was in the 1990s when your computer maybe only

had 4MB RAM total)

14



Hierarchical Page Tables

• It is likely each process does not use all 4GB at once

(sparse)

• Put page tables in swappable virtual memory

• 4MB page table is 1024 entries which can be mapped

by one 4kB page

• In this particular example, the smallest possible process

uses only 8k (2 pages) of page tables, rather than 4MB

15



Hierarchical Page Table Diagram (32-bit)

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

16



32-bit Hierarchical Page Tables

• 32-bit x86 chips have hardware 2-level page tables

• ARM32 2-level page tables (3-level if use PAE), but more

complicated than the example we are using

17



64-bit System Page Tables

• Virtual address space much bigger, how to handle?

• Physical memory usually not 64-bit yet, often from 40-48

bits

• Can we just add more levels of page tables?

◦ 64 bit x86 has 4-level page tables (256TBv/64TBp)

44/40 bits

◦ Push by Intel for 5-level tables (128PBv/4PBp) 57 bits

• (Aside) Linux assumes 5 levels of page tables and

collapses down unused ones

18



Another approach (Historical) Inverted
Page Table

• IBM Power, Ultrasparc, ia64

• 4/5 level tables can be slow

• Have one single mapping, page mapping for each physical

to virtual page

• Almost like having a large software TLB

• Note: Linus Torvalds wasn’t a fan

• A linear search to find a mapping is slow, so can use

hash to find page. Better best case performance, can

19



perform poorly if hash algorithm has lots of aliasing.

• Also has poor cache performance due

20



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

21



Walking the Page Tables

• Can be walked in Hardware or Software

• Hardware is more common

◦ Generally have a register pointing to the current

process page table (CR3 ox x86)? CR4? TTBR0?

◦ Saved/restored on context switch

• Early RISC machines would do it in Software.

◦ Can be slow

◦ Has complications: what if the page-walking code was

swapped out?

22



Translation Lookaside Buffer (TLB)

• How can you avoid multiple extra memory lookups on

every memory access?

• Like all other CPU memory solutions, a cache

• (Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level/way

23



Page Tables in Cache?

• Page tables live in memory like any other data structure

• Then can end up in the CPU cache as well, which can

help performance

• Some chips were designed where TLB wasn’t big enough

to cover all of the cache so a walk through the cache

would end up causing a lot of TLB misses

24



Page Table Caches

• Why walk the whole page table if likely you’ve walked

similar before

• Many processors have page table caches

◦ AMD Page Walking Caches (unified page table)

◦ Intel Page-structure caches (split translation cache)

◦ ARM unified translation cache

• Translation Caching: Skip, Don’t Walk (the Page Table)

(ISCA’10)

25



Flushing the TLB

• If page tables no longer accurate may need to clear out

(flush) the TLB

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

26



When do we flush TLB?

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (ASID=Address Space ID, intel

only added support recently)

• Avoiding this is why the top part is mapped to kernel

under Linux (security issue with Meltdown bug!)

27


