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Announcements

• HW#5 still being graded

• Midterms still being graded

• HW#6 will be posted
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Virtual Memory

• In the early days of computing RAM was an extremely

limited resource

• Could you give the illusion of more RAM by swapping

RAM to/from disk?

• Can manually do this in software (overlays) but could

HW/OS do this transparently for you?

• Despite the complexity, was implemented in the 1960s

• Pretty much all modern CPUs and OSes support this

• It enables many other features too
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Virtual Memory in ECE Classes

• ECE471 (embedded) – mention it, to differentiate bare

metal vs OS layout

• ECE574 (cluster computing) – mention it, has some

performance implications

• ECE571 (advanced processors) – look at it in detail as

modern memory / cache behavior tightly tied to it

• ECE531 (operating systems) – we are the OS, our job

to run it all so we actually have to understand it
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Virtual Memory – High Level

• Computer programs see a fake/virtual view of memory

• This memory is split up into chunks called pages

• A translation layer is set up that translates virtual pages

to the actual physical pages of RAM

• Every single load and store from your program passes

through this translation layer
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Virtual to Physical Mapping Diagram
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Notes on Previous Diagram

• Physical RAM can be much smaller than Virtual (in this

example, 512MB vs 4GB)

• Everything lives in Physical RAM, it’s only given the

illusion that virtual memory exists because the CPU

translates the virtual address pointers to physical on-

the-fly

• Each process can use the same identical virtual addresses,

they don’t conflict because behind the scenes they map

to separate physical addresses
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Physical Memory Downsides

• Never enough memory

• No memory protection between programs

• Memory fragmentation

• Programs need to be PIC (position independent code)

• Programs need to be totally loaded into memory before

execution, stack fixed size
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Virtual Memory Upsides

• Give the illusion of more memory than available, with

disk as backing store.

• Memory protection

• Give illusion of contiguous memory to avoid

fragmentation

• Demand paging (no swapping out whole processes), only

load parts of programs as needed

• Give each process own linear view of memory.
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Virtual Memory Downsides

• Complicated hardware/software

• Potentially slower, lots of indirection on every memory

access

• If run out of physical memory can end up swap storm,

machine unusable
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Memory Management Unit

• In very old days was a separate (optional!) chip

• Can run run OS without an MMU?

◦ There’s MMU-less Linux (uclinux)

◦ How do you keep processes separate? Very carefully...
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Page Lookup

• Simplest would just be a table, with virtual page as index

and physical page as value

• Ends up being more complex than this
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Page Tables – Hold Virt/Phys Mappings

• Collection of Page Table Entries (PTE)

• Some common components: (TODO: look up actual

values on ARM/Linux)

◦ ID of owner

◦ Virtual Page Number

◦ valid bit

◦ location of page (memory, disk, etc)

◦ protection info (read only, etc)

◦ page is dirty, age (how recent updated, for LRU)
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Page Table Encoding

• If 4k pages, bottom 12 bits of mappings unused

• Could you squeeze all the PTE info in those bits?

• Can be complex, ARM32 and ARM64 have really

complicated page table setups
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Page Table Issues – Size

• With 4GB memory and 4kB pages, you have 1 Million

pages per process.

• With 4-byte PTE then 4MB of page tables per-process.

Too big.

(or it was in the 1990s when your computer maybe only

had 4MB RAM total)
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Hierarchical Page Tables

• It is likely each process does not use all 4GB at once

(sparse)

• Put page tables in swappable virtual memory

• 4MB page table is 1024 entries which can be mapped

by one 4kB page

• In this particular example, the smallest possible process

uses only 8k (2 pages) of page tables, rather than 4MB
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Hierarchical Page Table Diagram (32-bit)
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32-bit Hierarchical Page Tables

• 32-bit x86 chips have hardware 2-level page tables

• ARM32 2-level page tables (3-level if use PAE), but more

complicated than the example we are using
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64-bit System Page Tables

• Virtual address space much bigger, how to handle?

• Physical memory usually not 64-bit yet, often from 40-48

bits

• Can we just add more levels of page tables?

◦ 64 bit x86 has 4-level page tables (256TBv/64TBp)

44/40 bits

◦ Push by Intel for 5-level tables (128PBv/4PBp) 57 bits

• (Aside) Linux assumes 5 levels of page tables and

collapses down unused ones
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Another approach (Historical) Inverted
Page Table

• IBM Power, Ultrasparc, ia64

• 4/5 level tables can be slow

• Have one single mapping, page mapping for each physical

to virtual page

• Almost like having a large software TLB

• Note: Linus Torvalds wasn’t a fan

• A linear search to find a mapping is slow, so can use

hash to find page. Better best case performance, can
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perform poorly if hash algorithm has lots of aliasing.

• Also has poor cache performance due

20



Inverted Page Table Diagram
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Walking the Page Tables

• Can be walked in Hardware or Software

• Hardware is more common

◦ Generally have a register pointing to the current

process page table (CR3 ox x86)? CR4? TTBR0?

◦ Saved/restored on context switch

• Early RISC machines would do it in Software.

◦ Can be slow

◦ Has complications: what if the page-walking code was

swapped out?
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Translation Lookaside Buffer (TLB)

• How can you avoid multiple extra memory lookups on

every memory access?

• Like all other CPU memory solutions, a cache

• (Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level/way
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Page Tables in Cache?

• Page tables live in memory like any other data structure

• Then can end up in the CPU cache as well, which can

help performance

• Some chips were designed where TLB wasn’t big enough

to cover all of the cache so a walk through the cache

would end up causing a lot of TLB misses
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Page Table Caches

• Why walk the whole page table if likely you’ve walked

similar before

• Many processors have page table caches

◦ AMD Page Walking Caches (unified page table)

◦ Intel Page-structure caches (split translation cache)

◦ ARM unified translation cache

• Translation Caching: Skip, Don’t Walk (the Page Table)

(ISCA’10)
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Flushing the TLB

• If page tables no longer accurate may need to clear out

(flush) the TLB

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills
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When do we flush TLB?

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (ASID=Address Space ID, intel

only added support recently)

• Avoiding this is why the top part is mapped to kernel

under Linux (security issue with Meltdown bug!)
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