ECE 531 — Advanced Operating

Systems
Lecture 20

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

24 QOctober 2025

Announcements

o HW+5 still being graded
e Midterms still being graded

e HW#6 will be posted

Virtual Memory

e In the early days of computing RAM was an extremely
limited resource

e Could you give the illusion of more RAM by swapping
RAM to/from disk?

e Can manually do this in software (overlays) but could

HW /OS do this transparently for you?

e Despite the complexity, was implemented in the 1960s

e Pretty much all modern CPUs and OSes support this

e It enables many other features too

-y 2

Virtual Memory in ECE Classes

e ECE471 (embedded) — mention it, to differentiate bare
metal vs OS layout

e ECE574 (cluster computing) — mention it, has some
performance implications

e ECE571 (advanced processors) — look at it in detail as
modern memory / cache behavior tightly tied to it

e ECEbH31 (operating systems) — we are the OS, our job
to run 1t all so we actually have to understand it

Virtual Memory — High Level

e Computer programs see a fake/virtual view of memory

e This memory is split up into chunks called pages

e A translation layer is set up that translates virtual pages
to the actual physical pages of RAM

e Every single load and store from your program passes
through this translation layer

Virtual to Physical Mapping Diagram

Process 1 Process 2
(virtual address space) (virtual address space)
Oxffff f000 Oxffff f000
Kernel Kernel
0xc000 0000 0xc000 0000
----- Stack - - Stack -
T Physical RAM
----- Heap Heap
_______________ 0x1fff f000 ... BSS -
BSS 0x1fff €000
------ Data - - Data
0x0001 0000 | ... Text . Text | ox0001 0000
0x0000 3000
0x0000 2000
0x0000 1000
0x0000 0000 0x0000 0000 0x0000 0000

Notes on Previous Diagram

e Physical RAM can be much smaller than Virtual (in this
example, 512MB vs 4GB)

e Everything lives in Physical RAM, it's only given the
illusion that virtual memory exists because the CPU
translates the virtual address pointers to physical on-
the-fly

e Each process can use the same identical virtual addresses,
they don't conflict because behind the scenes they map
to separate physical addresses

-y 6

Physical Memory Downsides

e Never enough memory

e No memory protection between programs

e Memory fragmentation

e Programs need to be PIC (position independent code)

e Programs need to be totally loaded into memory before
execution, stack fixed size

Virtual Memory Upsides

e Give the illusion of more memory than available, with
disk as backing store.

e Memory protection

e Give illusion of contiguous memory to avoid
fragmentation

e Demand paging (no swapping out whole processes), only
load parts of programs as needed

e Give each process own linear view of memory.

Virtual Memory Downsides

e Complicated hardware/software

e Potentially slower, lots of indirection on every memory
access

e If run out of physical memory can end up swap storm,
machine unusable

Memory Management Unit

e In very old days was a separate (optional!) chip
e Can run run OS without an MMU?

o There's MMU-less Linux (uclinux)
o How do you keep processes separate? Very carefully...

/Y 10

Page Lookup

e Simplest would just be a table, with virtual page as index
and physical page as value
e Ends up being more complex than this

/Y 11

Page Tables — Hold Virt/Phys Mappings

e Collection of Page Table Entries (PTE)
e Some common components: (TODO: look up actual
values on ARM /Linux)
o ID of owner
o Virtual Page Number
o valid bit
o location of page (memory, disk, etc)
o protection info (read only, etc)
o page is dirty, age (how recent updated, for LRU)

/Y 12

Page Table Encoding

o If 4k pages, bottom 12 bits of mappings unused

e Could you squeeze all the PTE info in those bits?
e Can be complex, ARM32 and ARMG64 have really
complicated page table setups

/Y 13

Page Table Issues — Size

e With 4GB memory and 4kB pages, you have 1 Million
pages per process.

e With 4-byte PTE then 4MB of page tables per-process.
Too big.
(or it was in the 1990s when your computer maybe only
had 4MB RAM total)

-y 14

Hierarchical Page Tables

o It is likely each process does not use all 4GB at once
(sparse)

e Put page tables in swappable virtual memory

e 4MB page table is 1024 entries which can be mapped
by one 4kB page

e In this particular example, the smallest possible process
uses only 8k (2 pages) of page tables, rather than 4MB

-y 15

Hierarchical Page Table Diagram (32-bit)

Virtual Address

10bits

10bits

12bits

—
Page Table
Base Address
(Stored in a register)

4MB Page Table

4kB page tables

Physical Memory

\

—
—

16

32-bit Hierarchical Page Tables

e 32-bit x86 chips have hardware 2-level page tables

e ARM32 2-level page tables (3-level if use PAE), but more
complicated than the example we are using

-y 17

64-bit System Page Tables

e Virtual address space much bigger, how to handle?
e Physical memory usually not 64-bit yet, often from 40-48
bits
e Can we just add more levels of page tables?
o 64 bit x86 has 4-level page tables (256 TBv/64TBp)
44 /40 bits
o Push by Intel for 5-level tables (128PBv/4PBp) 57 bits
e (Aside) Linux assumes 5 levels of page tables and
collapses down unused ones

-y 18

Another approach (Historical) Inverted

Page Table

e |IBM Power, Ultrasparc, 1a64
e 4/5 level tables can be slow

e Have one single mapping, page mapping for each physical

to virtual page
e Almost like having a large software
e Note: Linus Torvalds wasn't a fan

LB

e A linear search to find a mapping is slow, so can use
hash to find page. Better best case performance, can

19

perform poorly if hash algorithm has lots of aliasing.
e Also has poor cache performance due

20

Inverted Page Table Diagram

Physical Memory

Page Tables

Virtual
Address

- - -
— b
L» alias

re-hash

Walking the Page Tables

e Can be walked in Hardware or Software
e Hardware Is more common
o Generally have a register pointing to the current
process page table (CR3 ox x86)7 CR47 BRO?
o Saved/restored on context switch
e Early RISC machines would do it in Software.
o Can be slow
o Has complications: what if the page-walking code was
swapped out?

/Y 22

Translation Lookaside Buffer (TLB)

e How can you avoid multiple extra memory lookups on
every memory access’

e Like all other CPU memory solutions, a cache

e (Lookaside Buffer is an obsolete term meaning cache)

e Caches page tables

e Much faster than doing a page-table walk.

e Historically fully associative, recently multi-level /way

/Y 23

Page Tables in Cache?

e Page tables live in memory like any other data structure

e Then can end up in the CPU cache as well, which can
help performance

e Some chips were designed where TLB wasn't big enough
to cover all of the cache so a walk through the cache
would end up causing a lot of TLB misses

Page Table Caches

e \Why walk the whole page table if likely you've walked
similar before
e Many processors have page table caches
o AMD Page Walking Caches (unified page table)
o Intel Page-structure caches (split translation cache)
o ARM unified translation cache

e Translation Caching: Skip, Don't Walk (the Page Table)
(ISCA'10)

-y 25

Flushing the TLB

e If page tables no longer accurate may need to clear out
(flush) the TLB

e Sometimes called a “TLB Shootdown”

e Hurts performance as the TLB gradually retills

/Y 26

When do we flush TLB?

e May need to do this on context switch if doesn't store
ASID or ASIDs run out (ASID=Address Space ID, intel
only added support recently)

e Avoiding this i1s why the top part is mapped to kernel
under Linux (security issue with Meltdown bug!)

-y 21

