
ECE 531 – Advanced Operating
Systems

Lecture 30

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 November 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Homework #7 was posted

◦ Had some issues, I will be posting an updated version

1



Reliability – What if Power Goes Out?

• Anything queued up to be written to disk can be lost.

• Worse than lost data, what if it’s metadata. Can whole

filesystem end up corrupted?

• This is also why you should unmount disks before ejecting

or pulling cable out

2



Why Writes get Lost

• Writing to disk is slow and can take a while (milliseconds)

• It is better for performance to group writes together

(instead of trickling them out one byte at a time) but

that means having a buffer

• If the power goes out before the buffer in memory gets

to disk, problems

• Even worse, the hard-disk might have a memory cache

too that also might be lost

3



Can you force writes to disk?

• Maybe even have the OS flush buffers every few seconds?

• Doing a “sync” or “triple-sync” to force it?

• Can be bad for performance / power saving (old days

idle drives could spin down)

• Even worse, disks have their own caches, and they might

lie when you ask if the data made it to disk (why?

benchmarks...)

4



After a Crash

• What happens on next startup?

◦ Traditionally, a tool called fsck (filesystem-check)

would run and try to fix things. Find inodes without

matching direntries and try to bring them back, etc.

◦ fsck really slow, especially for large disks (hours?)

◦ also could go very wrong. (disk images on disk?)

◦ Could sometimes have file contents but not recover

names. These end up in “lost+found” directory

5



Journaling Filesystem

• A write that changes things (say remove a directory)

Removes dir, releases inodes, frees up blocks. What if

interrupted in there? Inconsistent, things not freed.

• Store writes to metadata separately in a circular list.

Then goes and done things.

• Make sure metadata written to disk, only then update

file contents

• Worst case you might lose some data written, but actual

fs structure should be intact. Circular buffer.

6



• On crash plays back all it has in journal at boot

7



Backups

• Are disks perfect? No. Newer filesystems can store

checksums and the like

• Backups! Are you backing things up? Can you backup a

filesystem while it’s being used? Can be tricky depending

how it is designed.

• Snapshots – we’ll talk about this later

8



Other Filesystem Features

9



Compression

• Disk space valuable, can we fit more with compression?

• Downside is it can be slow to decompress

• Also harder to manage because different files have

different compression ratios

• What happens when write a byte to middle of compressed

block and now it’s too big to fit and you have to

recompress whole file

• Related: de-duplication, if same file multiple times

remove copies and just point to the one copy

10



Sparse Files / Holes

• What if your file has lots of zeros?

• What if you seek way into a file (to write something at

end)

• Do you need to allocate zeros on disk for these?

• Many filesystems support holes, where the inode list says

a file has a zero, only allocates disk block if you write in

this range

• Can save a lot of disk space

11



Deleting Files

• Is deleting a file permanent?

• Should you store info to make Undelete possible?

• Secure Delete – is just overwriting once fine? Multiple

over-writes different patterns, power-drill and thermite?

• Old spinning-rust disks if you opened it up and had fancy

tools could often see previous writes because write head

never really lined up

• Modern flash drives, due to wear leveling old blocks

might be left behind

12



Encryption

• Can encrypt disks

• Secure

• Bad if you forget encryption key

13



More Features

• Online fsck – constantly check for errors

• Defragmentation – in old days could improve

performance by having files contiguous on disk (needed

on modern fses?)

• Quotas – especially an issue on multi-user machines, you

want to keep any one user from filling up the disk.

• Locking – may want to prevent more than one person

writing a file at a time as it can get corrupted

• Checksums – can tell if file got corrupted on disk

14



• Resizing – can you resize a filesystem to be

bigger/smaller (why would you want to?)

15



Common Filesystems

• Windows: NTFS, FAT, ReFS

• UNIX/Linux: EXT4, BTRFS, ZFS, XFS

• OSX: HFS+, APFS (Apple Filesystem)

• Media: ISO9660, UDF

• Network: NFS, CIFS

16



FAT Filesystem

• https://wiki.osdev.org/FAT

• Originally introduced for small floppy disks in late

70s/early 80s

• Fat-8 (obsolete), FAT-12/FAT-16/FAT-32

• Disk is broken up into chunks called “clusters”, the

number after FAT- is number of bits used to identify a

specific cluster.

• Benefits: mostly simplicity, widely used and supported

17

https://wiki.osdev.org/FAT


Bytes / Sectors

• The underlying disk traditionally has its own blocksize

◦ Sometimes this is called a sector, dating back to

floppy/hard disks with spinning discs, and a block was

part of a circular track (sector)

◦ Usually underlying block / sector was 512 bytes but

not necessarily

◦ On modern systems might be 4k. Some weird things

like CD-ROMS (2336 bytes)

18



Clusters

• For FAT purposes disk broken up into chunks called

clusters, which can be multiple contiguous disk blocks

• In order to handle disks as they got larger without

changing the FAT format the clustersize would grow,

from 512-bytes to 32k or more

• This led to a tradeoff, could have bigger disks, but

possibly waste lots of empty space if files less than 32k

(or if the last cluster not completely filled)

19



Chains

• A file that is bigger than a cluster can be found via a

chain of clusters that don’t have to be contiguous

20



Overall Format

offset (bytes) description

0 Boot Block

512 FAT #1

...

... FAT #N

... Root Directory

... Data Blocks

...

...

21



Reserved Sectors

• Some sectors are reserved at format time

• On FAT32 12 are reserved

22



Boot Sector (Sector 0)

• Includes BIOS Parameter Block (BPB) which has info

on the filesystem, pointers to location of other sections

• Also includes initial bootloader code

• FAT32 additions:

◦ File system information sector (sector 1)

◦ Bootloader can be spread to sector 2 also.

◦ Also backup boot sector at 6, 7, 8 and maybe extra

code at 12

23



Boot Sector Details
512 bytes, first part configuration info (block size, blocks in disk, FATs, etc), rest actual boot loader code

Offset Len Description

0x00 3 bootstrap (JMP insn to code start)
0x03 8 manufacturer/OEM name
0x0b 2 bytes per block (start of BPB)
0x0d 1 blocks per unit (sectors per cluster)
0x0e 2 reserved blocks (usu. 1 for boot)
0x10 1 number of FATs
0x11 2 total root dir entries

0x13 2 blocks per disk. if > 216 see 0x20
0x15 1 media descriptor
0x16 2 FAT size (blocks)
0x18 2 blocks per track

Offset Len Description

0x1a 2 disk heads
0x1c 4 hidden blocks (usually 0)
0x20 4 blocks on entire disk
0x24 2 drive num
0x26 1 boot signature
0x27 4 volume serial number
0x2b 11 volume label
0x36 8 fs id
0x3e 0x1c0 rest of boot code
0x1fe 2 0x55aa (end of boot block)

24



Directory Entries – Store metadata on File

Note: values are little endian
offset size (bytes) description

0x00 8 filename

0x08 3 extension

0x0b 1 attributes

0x0c 1 (FAT32) uppercase

0x0d 1 (FAT32) extra bits for timestamp

0x0e 2 (optional) creation time

0x10 2 (optional) creation date

0x12 2 (optional) last access date

0x14 2 (FAT32) upper half of start cluster

0x16 2 last change time

0x18 2 last update date

0x1a 2 start cluster

0x1c 4 filesize (bytes)

25



Filename+Extension

• Filename

◦ First byte 0x0 = file slot never used before

◦ First byte 0xe5 = file deleted (sigma) (how can you

undelete? restore first char, then hope the file was

contiguous and restore as many clusters as the filesize

says. later DOS deleted char stored in ???)

◦ first byte 0x05 = first char actually 0xe5

◦ 0x2e ’.’ this is current directory

◦ If another 0x2e ’.’ then cluster field is parent directory

26



(..) 0x00 means root

◦ If not 8 chars, padded with spaces

◦ By default, only capital letters, numbers. Excludes

some punctuation.

• Extension

◦ three bytes. dot is assumed

27



FAT Attributes

• 0x01 – read-only

• 0x02 – hidden

• 0x04 – system

• 0x08 – disklabel

• 0x10 – subdirectory

• 0x20 – archive (for backups)

• 0x0f – long file name

28



FAT Timestamps

• Time: hhhhhmmm.mmmsssss

h=0..31, m=0..63, s=0..31 (seconds has to be even)

• Date yyyyyyym.mmmddddd

y=0..127 (1980-2099 valid)

m=0..15 (1=Jan), d=0..31 (1=first)

• FAT32 you can get extra bits to get full seconds and

milliseconds

29



Directories

• If sub-dir attribute set, then cluster chain treated as a

series of directory entries

• Some of them can be files, and some can be

subdirectories too

30



Root Directory

• On FAT12/16 area allocated and format time, so limited

room (FAT32 lives in data area). Special, and has no ’.’

or ’..’

• On FAT32 it’s a more like a standard subdirectory

• How do we know where a file starts?

Root directory entry follows after last FAT.

31



File Allocation Table (FAT)

• Data structure that stores linked-list of clusters used by

files

• Instead of living with the file metadata, instead global

datastructure that all share

• Was easy to parse/maintain on old low-RAM systems

and also avoided jumping all over disk when following

linked list

• There may be multiple copies (why?)

32



File Allocation Table Details

• Just a table of values, one for each cluster pointing to

the next cluster in the file.

◦ FAT12 these were 12-bits (two spread across 3 bytes)

◦ FAT16 16-bits

◦ FAT32 32-bits (actual 28 with top 4 bits reserved)

33



FAT Entry Meanings

• Entry 0 and 1 are reserved.

◦ 0 holds FAT id (0xfff0 - 0xffff)

will end chain if try to follow an empty (0) cluster

◦ 1 holds the end-of-chain marker (usually 0xffff) The

last entry in a list is 0xffff

Some bits cleared/set to indicate if shutdown cleanly

• Entry contents

◦ 0 means unused

◦ 1 reserved

34



◦ 0xfff7 might mean bad cluster.

◦ 0xffff is end of chain

35



FAT Size Questions

• What is the maximum sized disk you can have?

FAT32 can have 228 clusters. Max cluster size is 32k

w/o hacks. This would imply 8TB.

Microsoft usually limited it to 32GB

• What is the maximum sized file you can have?

The filesize in the directory entry is 32-bits which means

max is 4GB

36



FAT Example

Example FAT:

offset value

0 //////

1 //////

2 3

3 5

4 0

5 ffff

. . .

N 0

• Say the directory entry for a file points to “cluster 2” for

the start of the file

• If cluster size is 4k, it means the first 4k of file are

found in the data part of the filesystem, at disk block

37



data start+ (2 ∗ clustersize)
• If you are reading past the first cluster, you need to

check the FAT to find the next cluster. Look up entry

#2 in the FAT and see it points to cluster 3. So the

next 4k are found on cluster 3

• If you go beyond that, look in FAT entry #3 and see it

points to cluster 5. So look there

• If you try to read past that, look in FAT for entry #5

which is 0xffff. This means end of file, there are no more

clusters

• Note that you don’t have to use up the whole cluster

38



so you should also pay attention to the filesize in the

directory entry and ignore any data past the end

39



Undeleting

• Have to remember first char of file (later DOS stored

this somewhere)

• Deleted file entry still has start cluster. Have to hope

none of the clusters have been reused

• To help, later DOS did last-fit and kept allocation pointer

to try to avoid reusing clusters right away

40



Long Filenames

• UMSDOS – Linux hack that had a –linux.— file in each

dir that held permissions, etc.

• VFAT – Windows95 solution

◦ A dummy file entry put beforehand to hold long name

Has attributes VOLUME SYSTEM HIDDEN

READONLY (0xf) which old will ignore

◦ Up to 13 UCS-2 (unicode) characters per entry, up to

20 of them can be chained (for up to 255 char long

filenames)

41



◦ Also a compatible one is created. Something like

“HelloWorld.jpg” might be “HELLOW∼1.JPG”

◦ Newer VFAT also re-used some reserved bytes in dir

entry to extend creation time to have ms resolution.

42



Newer FAT – Fat32

• Fat32 – allow larger files and filesystems. Larger

directories. Lots of changes besides just making FAT

twice as large. Still limited to 4GB-1 filesize

43



Newer FAT – exFAT

• Designed for use in digital cameras

• All FAT32 patents had expired so rumors this was MS

way of extending things

• For while Linux driver was questionable leaked one, but

now there’s an approved on

• Allows more than 4GB filesize and 32GB of FAT32.

512TB - 128PB. Max filesize 128PB

• Filenames all unicode but not slashes, : * ? ” angle

brackets, pipe

44



• Hash-based lookups. Convert to uppercase and down to

16-bit hash before lookup

• Checksums?

45



FAT on Linux

• Linux uses inodes for file access. How can you mount a

FAT filesystem then?

• Really, inode just has to be a unique identifier for a file

that can be used to find the start of the file info on disk.

So you can use the cluster number or similar.

46


