ECE 531 — Advanced Operating

Systems
Lecture 30

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

17 November 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Homework #7 was posted
o Had some issues, | will be posting an updated version

Reliability — What if Power Goes Out?

e Anything queued up to be written to disk can be lost.

e Worse than lost data, what if it's metadata. Can whole
filesystem end up corrupted?

e Thisis also why you should unmount disks before ejecting
or pulling cable out

Why Writes get Lost

e Writing to disk is slow and can take a while (milliseconds)

e It is better for performance to group writes together
(instead of trickling them out one byte at a time) but
that means having a buffer

o If the power goes out before the buffer in memory gets
to disk, problems

e Even worse, the hard-disk might have a memory cache
too that also might be lost

Can you force writes to disk?

e Maybe even have the OS flush buffers every few seconds?

e Doing a “sync”’ or “triple-sync” to force it?

e Can be bad for performance / power saving (old days
idle drives could spin down)

e Even worse, disks have their own caches, and they might
lie when you ask if the data made it to disk (why?
benchmarks...)

After a Crash

e What happens on next startup?

o Traditionally, a tool called fsck (filesystem-check)
would run and try to fix things. Find inodes without
matching direntries and try to bring them back, etc.

o fsck really slow, especially for large disks (hours?)

o also could go very wrong. (disk images on disk?)

o Could sometimes have file contents but not recover
names. These end up in “lost+found” directory

Journaling Filesystem

e A write that changes things (say remove a directory)
Removes dir, releases inodes, frees up blocks. What if
interrupted in there? Inconsistent, things not freed.

e Store writes to metadata separately in a circular list.
Then goes and done things.

e Make sure metadata written to disk, only then update
file contents

e \Worst case you might lose some data written, but actual
fs structure should be intact. Circular buffer.

-y 6

e On crash plays back all it has in journal at boot

Backups

e Are disks perfect? No. Newer filesystems can store
checksums and the like

e Backups! Are you backing things up? Can you backup a
filesystem while it's being used? Can be tricky depending
how it Is designed.

e Snapshots — we'll talk about this later

Other Filesystem Features

Compression

e Disk space valuable, can we fit more with compression?

e Downside is it can be slow to decompress

e Also harder to manage because different files have
different compression ratios

e \What happens when write a byte to middle of compressed
block and now it's too big to fit and you have to
recompress whole file

e Related: de-duplication, if same file multiple times
remove copies and just point to the one copy

-y 10

Sparse Files / Holes

e What if your file has lots of zeros?

e What if you seek way into a file (to write something at
end)

e Do you need to allocate zeros on disk for these?

e Many filesystems support holes, where the inode list says
a file has a zero, only allocates disk block if you write in
this range

e Can save a lot of disk space

/Y 11

Deleting Files

e Is deleting a file permanent?

e Should you store info to make Undelete possible?

e Secure Delete — is just overwriting once fine? Multiple
over-writes different patterns, power-drill and thermite?

e Old spinning-rust disks if you opened it up and had fancy
tools could often see previous writes because write head

never real
e Modern f
might be

y lined up
ash drives, due to wear leveling old blocks
eft behind

12

Encryption

e Can encrypt disks
e Secure
e Bad if you forget encryption key

13

More Features

e Online fsck — constantly check for errors

e Defragmentation — in old days could improve
performance by having files contiguous on disk (needed
on modern fses?)

e Quotas — especially an issue on multi-user machines, you
want to keep any one user from filling up the disk.

e Locking — may want to prevent more than one person
writing a file at a time as it can get corrupted

e Checksums — can tell if file got corrupted on disk

-y 14

e Resizing — <can you resize a filesystem to be
bigger/smaller (why would you want to?)

-y 15

Common Filesystems

e Windows: NTFS, FAT, ReFS

e UNIX/Linux: EXT4, BTRFS, ZFS, XFS
e OSX: HFS+, APFS (Apple Filesystem)
e Media: 1509660, UDF

e Network: NFS, CIFS

-y 16

FAT Filesystem

e https://wiki.osdev.org/FAT

e Originally introduced for small floppy disks in late
70s/early 80s

e Fat-8 (obsolete), FAT-12/FAT-16/FAT-32

e Disk is broken up into chunks called “clusters”, the
number after FAT- is number of bits used to identify a
specific cluster.

e Benefits: mostly simplicity, widely used and supported

-y 17

https://wiki.osdev.org/FAT

Bytes / Sectors

e [he underlying disk traditionally has its own blocksize
o Sometimes this is called a sector, dating back to
floppy/hard disks with spinning discs, and a block was
part of a circular track (sector)
o Usually underlying block / sector was 512 bytes but
not necessarily

o On modern systems might be 4k. Some weird things
like CD-ROMS (2336 bytes)

/Y 18

Clusters

e For FAT purposes disk broken up into chunks called
clusters, which can be multiple contiguous disk blocks

e In order to handle disks as they got larger without
changing the FAT format the clustersize would grow,
from 512-bytes to 32k or more

e This led to a tradeoff, could have bigger disks, but
possibly waste lots of empty space if files less than 32k
(or if the last cluster not completely filled)

/Y 19

Chains

e A file that is bigger than a cluster can be found via a
chain of clusters that don't have to be contiguous

-y 20

Overall Format

offset (bytes) | description
0 Boot Block
512 FAT #1
FAT #N
Root Directory
Data Blocks

21

Reserved Sectors

e Some sectors are reserved at format time
e On FAT32 12 are reserved

22

Boot Sector (Sector 0)

e Includes BIOS Parameter Block (BPB) which has info
on the filesystem, pointers to location of other sections
e Also includes initial bootloader code
e FAT32 additions:
o File system information sector (sector 1)
o Bootloader can be spread to sector 2 also.

o Also backup boot sector at 6, 7, 8 and maybe extra
code at 12

-y 23

Boot Sector Details

512 bytes, first part configuration info (block size, blocks in disk, FATs, etc), rest actual boot loader code

Offset | Len Description

0x00 3 bootstrap (JMP insn to code start)
0x03 8 manufacturer/OEM name

0x0b 2 bytes per block (start of BPB)
0x0d 1 blocks per unit (sectors per cluster)
0x0e 2 reserved blocks (usu. 1 for boot)
0x10 1 number of FATs

Ox11 2 total root dir entries

0x13 2 blocks per disk. if > 210 see 0x20
0x15 1 media descriptor

0x16 2 FAT size (blocks)

0x18 2 blocks per track

Offset Len Description

Ox1la 2 disk heads

Ox1c 4 hidden blocks (usually 0)
0x20 4 blocks on entire disk
0x24 2 drive num

0x26 1 boot signature

0x27 4 volume serial number
Ox2b 11 volume label

0x36 8 fs id

0x3e Ox1c0 rest of boot code

Ox1fe 2 0x55aa (end of boot block)

24

Directory Entries — Store metadata on File

Note: values are little endian

offset | size (bytes) description

0x00 8 filename

0x08 3 extension

0x0b 1 attributes

0x0c 1 (FAT32) uppercase

0x0d 1 (FAT32) extra bits for timestamp
Ox0Oe 2 (optional) creation time
0x10 2 (optional) creation date
0x12 2 (optional) last access date
0x14 2 (FAT32) upper half of start cluster
Ox16 2 last change time

0x18 2 last update date

Ox1a 2 start cluster

Ox1c 4 filesize (bytes)

-y 25

Filename-+4Extension

e Filename
o First byte Ox0 = file slot never used before

o First byte Oxeb = file deleted (sigma) (how can you
undelete? restore first char, then hope the file was
contiguous and restore as many clusters as the filesize
says. later DOS deleted char stored in 777)

o first byte O0x05 = first char actually Oxe5

o Ox2e "." this is current directory

o If another Ox2e '." then cluster field is parent directory

/Y 26

(..) 0x00 means root
o If not 8 chars, padded with spaces
o By default, only capital letters, numbers. Excludes
some punctuation.
e Extension
o three bytes. dot Is assumed

-y 27

FAT Attributes

e Ox01 — read-only

e 0x02 — hidden

e 0x04 — system

e 0x08 — disklabel

e 0x10 — subdirectory

e 0x20 — archive (for backups)
e Ox0f — long file name

28

FAT Timestamps

e Time: hhhhhmmm.mmmsssss
h=0..31, m=0..63, s=0..31 (seconds has to be even)
e Date yyyyyyym.mmmddddd
y=0..127 (1980-2099 valid)
m=0..15 (1=Jan), d=0..31 (1=first)
e FAT32 you can get extra bits to get full seconds and
milliseconds

-y 29

Directories

o |f sub-dir attribute set, then cluster chain treated as a
series of directory entries

e Some of them can be files;, and some can be
subdirectories too

/Y 30

Root Directory

e On FAT12/16 area allocated and format time, so limited
room (FAT32 lives in data area). Special, and has no .’
or ..

e On FAT32 it's a more like a standard subdirectory

e How do we know where a file starts?

Root directory entry follows after last FAT.

-y 31

File Allocation Table (FAT)

e Data structure that stores linked-list of clusters used by
files

e Instead of living with the file metadata, instead global
datastructure that all share

e Was easy to parse/maintain on old low-RAM systems
and also avoided jumping all over disk when following
linked list

e There may be multiple copies (why?)

-y 32

File Allocation Table Details

e Just a table of values, one for each cluster pointing to
the next cluster in the file.

o FAT12 these were 12-bits (two spread across 3 bytes)
o FAT16 16-bits
o FAT32 32-bits (actual 28 with top 4 bits reserved)

-y 33

FAT Entry Meanings

e Entry 0 and 1 are reserved.
o 0 holds FAT id (OxfffO - Oxffff)
will end chain if try to follow an empty (0) cluster
o 1 holds the end-of-chain marker (usually Oxffff) The
last entry in a list is Oxffff
Some bits cleared/set to indicate if shutdown cleanly
e Entry contents
o 0 means unused
o 1 reserved

-y 34

o OxfHf7 might mean bad cluster.
o Oxffff is end of chain

35

FAT Size Questions

e What is the maximum sized disk you can have?
FAT32 can have 228 clusters. Max cluster size is 32k
w/o hacks. This would imply 8TB.
Microsoft usually limited it to 32GB
e What is the maximum sized file you can have?
The filesize in the directory entry is 32-bits which means

max i1s 4GB

/Y 36

FAT Example

offset value

0 //111]

1 /11111]

2 3
Example FAT: | 3 5

4 0

5 fff

N 0

e Say the directory entry for a file points to “cluster 2" for
the start of the file

o If cluster size is 4k, it means the first 4k of file are
found in the data part of the filesystem, at disk block

-y 37

data_start 4+ (2 * clustersize)

e If you are reading past the first cluster, you need to
check the FAT to find the next cluster. Look up entry
#2 in the FAT and see it points to cluster 3. So the
next 4k are found on cluster 3

e If you go beyond that, look in FAT entry #3 and see it

noints to cluster 5. So look there

e If you try to read past that, look in FAT for entry #b5
which is Oxffff. This means end of file, there are no more
clusters

e Note that you don't have to use up the whole cluster

-y 38

so you should also pay attention to the filesize in the
directory entry and ignore any data past the end

/Y 39

Undeleting

e Have to remember first char of file (later DOS stored
this somewhere)

e Deleted file entry still has start cluster. Have to hope
none of the clusters have been reused

e To help, later DOS did last-fit and kept allocation pointer
to try to avoid reusing clusters right away

VA A 4 10

Long Filenames

e UMSDOS - Linux hack that had a —linux.— file in each
dir that held permissions, etc.
e VFAT — Windows95 solution
o A dummy file entry put beforehand to hold long name
Has attributes VOLUME SYSTEM HIDDEN
READONLY (0xf) which old will ignore
o Up to 13 UCS-2 (unicode) characters per entry, up to

20 of them can be chained (for up to 255 char long
filenames)

-y a1

o Also a compatible one is created. Something like
“HelloWorld.jpg” might be "HELLOW~1.JPG"

o Newer VFAT also re-used some reserved bytes in dir
entry to extend creation time to have ms resolution.

VA A 4 1

Newer FAT — Fat32

o Fat32 — allow larger files and filesystems. Larger
directories. Lots of changes besides just making FAT
twice as large. Still limited to 4GB-1 filesize

VA A 4 3

Newer FAT — exFAT

e Designed for use in digital cameras

e All FAT32 patents had expired so rumors this was MS
way of extending things

e For while Linux driver was questionable leaked one, but
now there's an approved on

e Allows more than 4GB filesize and 32GB of FAT32.
512TB - 128PB. Max filesize 128PB

e Filenames all unicode but not slashes, : * 7 " angle
brackets, pipe

-y ”

e Hash-based lookups. Convert to uppercase and down to
16-bit hash before lookup
e Checksums?

-y 45

FAT on Linux

e Linux uses inodes for file access. How can you mount a

FAT filesystem then?

e Really, inode just has to be a unique identifier for a file
that can be used to find the start of the file info on disk.
So you can use the cluster number or similar.

VA A 4 16

