
ECE 531 – Advanced Operating
Systems

Lecture 31

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 November 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#7

• Don’t forget project status update due Friday

• There will eventually be a HW#8 (graphics, filesystems)

1

EXT2 – A “Traditional” UNIX-style
Indirect Filesystem

2

Ext2 FS – History

• Linux originally used “minixfs” but it had 16-bit offsets

and max size limit of 64MB and filename of 14 chars

• Replacement: ext, but still limits

• Search for a replacement: ext2 (by Rémy Card) vs xiafs

(by Ge Xia)

• ext2 won

• Later extended to ext3 (with journaling) and ext4

• Still issues with things like y2038 bug

3

Ext2 On-disk Info

• Originally supports 4TB filesystem, 2GB file size

• All structures are little-endian

Learned hard way not specifying, Atari disk images not

work on x86

4

Ext2 Block Sizes

• Block size 1k-4k

for various reasons it’s complicated on Linux to have a

block size greater than the page size

• Does blocksize have to be power of 2?

Some CD-ROMs had blocksize of 2336 bytes

• Hard-disks traditionally had sizes of 512 bytes (recent

push to 4k) (flash is probably much higher but has to

fake it for compatibility reasons)

5

• 5% of blocks reserved for root. Why? Still needed?

6

Overall Layout

• Low-level blocks, grouped together in block groups

• Boot sector, boot block 1, boot block 2, boot block 3
Boot

Block

Block Group

 0 N

Block Group...

Super

Block

Group

Descriptors Bitmap

Data Block

Bitmap

Inode Inode

Table Data Blocks

• Block group: superblock, fs descriptor, block bitmap,

inode bitmap, inode table, data blocks

7

Block Group Contents

• A bitmap for free/allocated blocks

• A bitmap of allocated inodes

• An inode table

• Possibly a backup of the superblock or block descriptor

table

• Effort is made to make files be allocated in same block

group as their dir entry

• Some reserved space to allow filesystem growing

8

Superblock

• located at 1k offset, 1k long

• Copies scattered throughout (fewer in later versions)

• Info on all the inode groups, block groups, etc.

• Copy in each block group, but typically only 1st one

used

9

Superblock Layout
Offset Size Description

0 4 Number of inodes in fs
4 8 Number of blocks in fs
8 4 Blocks reserved for root
12 4 Unallocated blocks
16 4 Unallocated inodes
20 4 block num of superblock
24 4 block size shift
28 4 fragment size shift
32 4 blocks in each group
36 4 fragments in each group
40 4 inodes per group
44 4 last mount time
48 4 last write time
52 2 mounts since last fsck

Offset Size Description

54 2 mounts between fsck
56 2 ext signature (0xef53)
58 2 fs status (dirty or clean)
60 2 what to do on error
62 2 minor version num
64 4 time of last fsck
68 4 interval between fsck
72 4 OS of creator
76 4 major version number
80 2 uid that can use reserved blocks
82 2 gid that can use reserved blocks
84 4 first non-reserved inode
88 2 size of each inode

10

Block Group Descriptor Table

• Follows right after superblock

offset size Description

0 4 address of block usage bitmap
4 4 address of inode usage bitmap
8 4 address of inode table
12 2 number of unallocated blocks in group
14 2 number of unallocated inodes in group
16 2 number of directories in group

11

Block Tables

• Block bitmap

◦ bitmap of blocks (1 used, 0 available)

◦ block group size based on bits in a bitmap.

• Hypothetical Example

◦ If blocksize 4kb, and the block bitmap is 8 blocks then

there’s room to map 32k blocks (32k* 8 bits per byte)

This could map a filesystem of 32k blocks * 4k

blocksize = 128MB

12

Inodes (index-nodes)

• All metadata (except filename) for file stored in inode

• inode entries are 128 bytes.

13

Inode Table Contents

• Inode bitmap – bitmap of available inodes

• Inode table

• Second entry in inode table points to root directory

• Can you run out of inodes before you run out of disk?

• Can use df -i to see free inodes on filesystem

14

Inode Layout
offset size desc

0 2 type and permissions
2 2 userid
4 4 lower 32 bits of size
8 4 last access time (atime)
12 4 creation time (ctime)
16 4 modification time (mtime)
20 4 deletion time
24 2 group id
26 2 count of hard links
28 4 disk sectors used by file?
32 4 flags
36 4 os specific

40 - 84 direct pointers 0 - 11
88 4 single indirect pointer
92 4 double indirect pointer
96 4 triple indirect pointer
100 4 generation number (NFS)
104 4 extended ACL
108 4 ACL (directory) else top of filesize
112 4 address of fragment

15

Inode Types

• FIFO

• char-device

• directory

• block-device

• regular file

• symbolic link

• UNIX socket

16

Inode Permissions

• 8-bits: St rwx rwx rwx

• S = setuid, run as separate user

• t = sticky bit (for /tmp, prevents users from deleting

files unless belongs to them)

• read/write/execute for user, group, and everyone

17

Inode Finding Blocks

• Addresses of first 12 blocks stored in inode (on 4k

filesystem, allows addressing 48k)

• If need more, the next address actually points to an

“indirect” block that points to a block full of more

pointers. On 4k filesystem this would be 1024 more

entries

• If need more than that, the next address in the inode

is a pointer to a double-indirect block. It points to

an indirect block, but each entry in that points to an

18

indirect block full of addresses

• Finally, if that’s not enough, there’s a final triple-indirect

block

19

Inode Finding Blocks Diagram

...

ptr0
ptr1
ptr2

ptr11
ptr12
ptr13
ptr14

single indirect

double indirect

triple indirect

.

.

.

. . .

. . .

0

0

0

0

0

0

0

0

0

0

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

Data Blocks
Directory Entry

(filename)

inode

20

Directory Info

type size

inode of file 4

size of entry 2

length of name 1

file type 1

file name N

• Directory is just an inode

• Directory inode has info/permissions/etc just like a file

• Directory entries are stored in a data block pointed to

21

by the indirect blocks

• Initial implementation was single linked list. ext3 and

newer use hash or tree.

• Holds inode, and name (up to 256 chars). inode 0 means

unused.

• Entries cannot span block boundary (waste space)

• Hard links – multiple directory entries can point to same

inode

• . and .. entries, point to inode of directory entry

• Subdirectory entries have name, and inode of directory

22

Finding Root Directory

• Superblock links to root directory, (usually inode 2)

23

How to find a file

• Find root directory

• Iterate down subdirectories

◦ ext2: linked list

◦ ext3/4: hash

• Get inode

24

How to read an inode

• Get blocksize, blocks per group, inodes per group, and

starting address of first group from the superblock

• Determine which block group the inode belongs to

• Read the group descriptor for that block group

• Extract location of the inode table

• Determine index of inode in table

• Use the inode block pointers to read file

25

Ext3

• Excellent (though dated) paper on it here

https://www.kernel.org/doc/ols/2005/ols2005v1-pages-77-104.

pdf

• Backwards/Forwards Compatible with ext2

• Htree instead of linked list in directory search

• Extended attributes (fine-grained permissions)

• Online fs growth

• Journal

metadata and data written to journal before commit.

26

https://www.kernel.org/doc/ols/2005/ols2005v1-pages-77-104.pdf
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-77-104.pdf

Can be replayed in case of system crash.

27

H-trees, B-trees and others

• B-tree

◦ Like a binary tree, but can have many entries in each

node

◦ Allows finding files much faster than linked-list

◦ Can be complex (at time of ext3 paper, the b-tree

implementation for XFS alone was more code than all

of the total ext2/3 fs code)

• H-tree

◦ Variant of a B-tree

28

◦ Uses hash of filename

◦ Hash down to 32-bit value before doing lookup.

With two level-table can lookup 16-millions 52-char

filenames very quickly

◦ 50-100x speedup on some workloads, but it does make

readdir() more complicated

29

Ext4

• Filesize up to 1Exabyte, filesize 16TB

• Extents (Rather than blocks)

◦ Contiguous area of blocks

◦ Only need to store start and how long, much more

compact

◦ On ext4 an extent can map up to 128MB of contiguous

space in one entry

◦ Does complicate allocation, fragmentation can limit

use

30

◦ Can make truncation/deletion slower

◦ Can store extents in an htree?

• Pre-allocate space, without having to fill with zeros at

allocation time (which is slow)

• Delayed allocation – only allocate space on flush (wait a

bit before lots of writes happen) so data more likely to

be contiguous

• Unlimited subdirectories (32k on ext3 and earlier. why?

because all files have hard-link to directory and hard-link

count was 16 bits. No negative to avoid bugs)

• Checksums on journals

31

• Improved timestamps, nanosecond resolution, push

beyond 2038 limit by grabbing unused bytes elsewhere

• Scalability: superblock locking issues. By avoiding

updating block count unless statfs() (df) run no need to

try to take lock on whole superblock every time a block

allocated

32

Why use FAT over ext2?

• FAT simpler, easy to code

• FAT supported on all major OSes

• ext2 faster, more robust filename and permissions

33

