ECE 531 — Advanced Operating

Systems
Lecture 31

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

19 November 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Don't forget HW#7
e Don't forget project status update due Friday
e There will eventually be a HW#38 (graphics, filesystems)

EXT2 — A “Traditional” UNIX-style
Indirect Filesystem

Ext2 FS — History

e Linux originally used “minixfs” but it had 16-bit offsets
and max size limit of 64MB and filename of 14 chars

e Replacement: ext, but still limits

e Search for a replacement: ext2 (by Rémy Card) vs xiafs
(by Ge Xia)

e ext2 won

e Later extended to ext3 (with journaling) and ext4

e Still issues with things like y2038 bug

Ext2 On-disk Info

e Originally supports 4TB filesystem, 2GB file size

e All structures are little-endian
Learned hard way not specifying, Atari disk images not
work on x86

Ext2 Block Sizes

e Block size 1k-4k
for various reasons it's complicated on Linux to have a
block size greater than the page size

e Does blocksize have to be power of 27
Some CD-ROMs had blocksize of 2336 bytes

e Hard-disks traditionally had sizes of 512 bytes (recent
push to 4k) (flash is probably much higher but has to
fake it for compatibility reasons)

-y 5

e 5% of blocks reserved for root. Why? Still needed?

Overall Layout

e Low-level blocks, grouped together in block groups
e Boot sector, boot block 1, boot block 2, boot block 3

Boot Block Group . Block Group
Block 0 N
Super | Group Data Block Inode Inode
Block | Descriptors | Bitmap Bitmap | Table | DataBlocks

e Block group: superblock, fs descriptor, block bitmap,
inode bitmap, inode table, data blocks

Block Group Contents

e A bitmap for free/allocated blocks

e A bitmap of allocated inodes

e An inode table

e Possibly a backup of the superblock or block descriptor
table

e Effort is made to make files be allocated in same block
group as their dir entry

e Some reserved space to allow filesystem growing

Superblock

e located at 1k offset, 1k long

e Copies scattered throughout (fewer in later versions)

e Info on all the inode groups, block groups, etc.

e Copy in each block group, but typically only 1st one
used

Superblock Layout

Offset | Size Description
0 4 Number of inodes in fs
4 38 Number of blocks in fs
8 4 Blocks reserved for root
12 4 Unallocated blocks
16 4 Unallocated inodes
20 4 block num of superblock
24 4 block size shift
28 4 fragment size shift
32 4 blocks in each group
36 4 fragments in each group
40 4 inodes per group
44 4 last mount time
438 4 last write time
52 2 mounts since last fsck

Offset | Size Description
54 2 mounts between fsck
56 2 ext signature (Oxef53)
58 2 fs status (dirty or clean)
60 2 what to do on error
62 2 minor version num
04 4 time of last fsck
68 4 interval between fsck
72 4 OS of creator
76 4 major version number
80 2 uid that can use reserved blocks
82 2 gid that can use reserved blocks
84 4 first non-reserved inode
88 2 size of each inode

10

Block Group Descriptor Table

e Follows right after superblock

offset | size Description
0 4 address of block usage bitmap
4 4 address of inode usage bitmap
8 4 address of inode table
12 2 number of unallocated blocks in group
14 2 number of unallocated inodes in group
16 2 number of directories in group

Block Tables

e Block bitmap
o bitmap of blocks (1 used, 0 available)
o block group size based on bits in a bitmap.
e Hypothetical Example
o If blocksize 4kb, and the block bitmap is 8 blocks then
there's room to map 32k blocks (32k* 8 bits per byte)
This could map a filesystem of 32k blocks * 4k
blocksize = 128MB

/Y 12

Inodes (index-nodes)

e All metadata (except filename) for file stored in inode
e inode entries are 128 bytes.

13

Inode Table Contents

e Inode bitmap — bitmap of available inodes

e Inode table

e Second entry in inode table points to root directory

e Can you run out of inodes before you run out of disk?
e Can use df -i to see free inodes on filesystem

-y 14

Inode Layout

offset size desc

0 2 type and permissions

2 2 userid

4 4 lower 32 bits of size

8 4 last access time (atime)
12 4 creation time (ctime)
16 4 modification time (mtime)
20 4 deletion time

24 2 group id

26 2 count of hard links

28 4 disk sectors used by file?
32 4 flags

36 4 os specific

40 - 84 direct pointers 0 - 11

88 4 single indirect pointer
92 4 double indirect pointer
96 4 triple indirect pointer
100 4 generation number (NFS)
104 4 extended ACL
108 4 ACL (directory) else top of filesize
112 4 address of fragment

e FIFO

e char-device
e directory

e block-device
e regular file

e symbolic link

e UNIX socket

Inode Types

16

Inode Permissions

e 8-bits: St rwx rwx rwx

e S = setuid, run as separate user

e t = sticky bit (for /tmp, prevents users from deleting
files unless belongs to them)

e read/write/execute for user, group, and everyone

-y 17

Inode Finding Blocks

e Addresses of first 12 blocks stored in inode (on 4k
filesystem, allows addressing 48k)

o If need more, the next address actually points to an
“indirect” block that points to a block full of more
pointers. On 4k filesystem this would be 1024 more
entries

e If need more than that, the next address in the inode
Is a pointer to a double-indirect block. It points to
an indirect block, but each entry in that points to an

-y 18

indirect block full of addresses

e Finally, if that's not enough, there's a final triple-indirect
block

-y 19

Inode Finding Blocks Diagram

Directory Entry Data Blocks

(filename)

%

\ inode "single indirect/ |
/ 0 0 [V —— 0
ptr0 (bs/4)-1 (bs/4)-1 (bs/4)-1 (bs/4)-1
ptri \ / A i A
tr2 / : v :
Pl double indirect ' ' '
ptri1 e 0 0 0 0
ptri2
ptr13 —
ptri4
(bs/4)-1 (bs/4)-1 (bs/4)-1 (bs/4)-1
N — A
triple indirec
0 0
(bs/4)-1 (bs/4)-1

Directory Info

type size
inode of file 4
size of entry 2
length of name 1
file type 1
fille name N

e Directory Is just an inode
e Directory inode has info/permissions/etc just like a file
e Directory entries are stored in a data block pointed to

-y o1

by the indirect blocks

e Initial implementation was single linked list. ext3 and
newer use hash or tree.

e Holds inode, and name (up to 256 chars). inode 0 means
unused.

e Entries cannot span block boundary (waste space)

e Hard links — multiple directory entries can point to same
inode

e . and .. entries, point to inode of directory entry

e Subdirectory entries have name, and inode of directory

-y 22

Finding Root Directory

e Superblock links to root directory, (usually inode 2)

23

How to find a file

e Find root directory

e |terate down subdirectories

o ext2: linked list
o ext3/4: hash

e Get inode

24

How to read an inode

o Get blocksize, blocks per group, inodes per group, and
starting address of first group from the superblock

e Determine which block group the inode belongs to

e Read the group descriptor for that block group

e Extract location of the inode table

e Determine index of inode in table

e Use the inode block pointers to read file

-y 25

Ext3

e Excellent (though dated) paper on it here
https://www.kernel.org/doc/o0ls/2005/01s2005v1i-¢
pdt

e Backwards/Forwards Compatible with ext2

e Htree instead of linked list in directory search

e Extended attributes (fine-grained permissions)

e Online fs growth

e Journal
metadata and data written to journal before commit.

-y 26

https://www.kernel.org/doc/ols/2005/ols2005v1-pages-77-104.pdf
https://www.kernel.org/doc/ols/2005/ols2005v1-pages-77-104.pdf

Can be replayed in case of system crash.

27

H-trees, B-trees and others

e B-tree
o Like a binary tree, but can have many entries in each
node
o Allows finding files much faster than linked-list
o Can be complex (at time of ext3 paper, the b-tree
implementation for XFS alone was more code than all
of the total ext2/3 fs code)
e H-tree
o Variant of a B-tree

-y 28

o Uses hash of filename

o Hash down to 32-bit value before doing lookup.
With two level-table can lookup 16-millions 52-char
fillenames very quickly

o 50-100x speedup on some workloads, but it does make
readdir() more complicated

/Y 29

Ext4

e Filesize up to 1Exabyte, filesize 16 TB
e Extents (Rather than blocks)
o Contiguous area of blocks
o Only need to store start and how long, much more
compact
o On ext4 an extent can map up to 128MB of contiguous
space In one entry
o Does complicate allocation, fragmentation can limit
use

/Y 30

o Can make truncation/deletion slower
o Can store extents in an htree?
e Pre-allocate space, without having to fill with zeros at
allocation time (which is slow)
e Delayed allocation — only allocate space on flush (wait a
bit before lots of writes happen) so data more likely to
pe contiguous
e Unlimited subdirectories (32k on ext3 and earlier. why?
because all files have hard-link to directory and hard-link
count was 16 bits. No negative to avoid bugs)
e Checksums on journals

-y 31

e Improved timestamps, nanosecond resolution, push
beyond 2038 limit by grabbing unused bytes elsewhere

e Scalability: superblock locking issues. By avoiding
updating block count unless statfs() (df) run no need to

try to take lock on whole superblock every time a block
allocated

-y 32

Why use FAT over ext2?

e FAT simpler, easy to code

e FAT supported on all major OSes

e ext2 faster, more robust filename and permissions

-y 33

