ECE 531 — Advanced Operating

Systems
Lecture 32

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

21 November 2025



Announcements

e Homework #8 will be posted

e Don't forget project update is due



Advanced Filesystems



XFS

e Developed by SGI for Irix. Many iterations since then

e Designed for high 1/0O throughput

e Extents-based and B+ trees

e XFSv5 newest version (v4 deprecated)

e Bigtime — timestamps 64 bit nanoseconds (good to 2486)
e Up to 8 exabytes




btrfs

e Butter-fs? Butter-fuss? B-tree fs?

e Started in 2007 at Oracle (by Chris Mason, who had
worked on Reiserfs)

e Address scaling

e Lack of pooling, snapshots, checksums in Linux
o Pooling — preallocate resources so they can be quickly
handed out when needed
o Snapshots — instead of taking full backup (long) just
take a snapshot of current state and then keep using
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filesystem
o Checksums — mathematically check to make sure
values in files are what they should be
o 294 = 16 Exabyte file size limit (Linux VFS limits you to
8EB)
e Space-efficient packing small files
e Dynamic inode allocation



btrfs details

e Primary data structure is a copy-on-write B-tree

o B-tree similar to a binary tree, but with pages full of
leaves
allow searches in logarithmic time

o Btrees also used by ext4, NTFS, HFS+

o Goal is to be able to quickly find disk block X

o Copy-on-write when writing to file, rather than over-
write (which is what traditional filesystems do)

o Since old data not over-written, crash recovery better
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Eventually old data garbage collected



More btrfs details

e Data in extents
e Forest of trees:
o sub-volumes
o extent-allocation
o checksum tree
o chunk device
o reloc
e On-line defragmentation
e On-line volume growth




e Built-in RAID
e [ransparent compression
e Snapshots
e Checksums on data and meta-data, on-line data
scrubbing
e De-duplication
e Cloning, reflinks
o can make an exact snapshot of file, copy-on-write
o different inodes, initially point to same blocks
o different from hardlink (different dir entry, point to
same inode)
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e In-place conversion from ext3/ext4

e Superblock mirrors — at 64k, 64MB,256GB, and 1PB.
All updated at same time. Has generation number.
Newest one is used.
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ZFS (zettabyte fs)

e Advanced FS from Sun/Oracle

e 128-bit filesystem (opposed to btrfs which is 64-bit)
Running out of space would require 10** 3TB hard drives

e Not really included in Linux due to licensing issues
(CDDL vs GPL2)
Was originally proprietary, then open source, then
proprietary again (with open fork)

e Vaguely similar in idea to btrfs

e indirect still, not extent based?
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e Acts as both the filesystem *and* the volume manager
(RAID array)

e Aim is to be super reliable, to know the state of
underlying disks, make sure files stay valid, drives stay
healthy

e Can take snapshots. Can roll back if something goes
wrong.

e Checksums. Stored in parent. Other fs stores with file
metadata so if that lost then checksum also lost

e Limitations: needs lots of RAM and lots of free disk
space (due to copies and snapshots). If less than 80%
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free then goes to space-conserve mode rather than high-
performance
e Supports encryption (btrfs doesn't yet)
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ReFS

e Resilient FS, codename “Protogon”

e Microsoft's answer to btrfs and zfs

e Windows 8.1

e Initially removed features such as disk quotas, alt data
streams, extended attributes (added later?)

e Uses B+ trees (not same as b-trees), similar to relational
database

e All structures 64-bit

e \Windows cannot be booted from ReFS
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APFS

e New Apple OS for High Sierra and later, iOS 10.3 later

e Fix core problems of HFS+

e Optimized for solid-state drive, encryption

e 04-bit inode numbers

e checksums

e Crash protection: instead of overwriting metadata,
creates new metadata, points to It, and only then
removes old

e No hard-links to directories (most other OSes are like
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this) but this breaks “Time Machine” backup
e HighSierra auto-converts flash-based drives
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Embedded

e Designed to be small, simple, read-only?
e romfs
e 32 byte header (magic, size, checksum,name)
e Repeating files (pointer to next [0 if none]), info, size,
checksum, file name, file data
e cramfs
e Filesystems optimized for flash storage?
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Networked File Systems

e Can you have non-local filesystems, where files come
from a network server?
e Allow a centralized file server to export a filesystem to
multiple clients.
e Two ways to do this
o File level access, where syscalls are sent to the server
(like open, read, write)
o Block level access, where the remote server acts like
a block device and any OS can be run over it (NAS,
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network-attached storage)
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Cluster File Systems

e \We learn about these in ECE574 Cluster Computing

e Distributed, fault tolerant, multiple servers working
together

e Things like Lustre
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Cloud Filesystems?

e Blur the lines
e Can appear to be part of a filesystem even though maybe
served over http requests

e You can actually make an httpfs if you want
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NFS — Network File System (NFS2/3/4)

e Developed by Sun in the 80s.

e Stateless. Means server and client can reboot without
the other noticing.

e A server, nfsd, exports filesystems as described in
/etc/exports. The server can be in userspace or
in the kernel

e Needs some sort of “file handle” unique value to specify
value. Often cheat and use inode value. Problem with
older version of protocol with only 32-bit handles.
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e UDP vs TDP

e Read-ahead can help performance

e Cache consistency a problem. One way is to just have
timeouts that flush data regularly (3-30s)

e List of operations (sort of like syscalls) sent to server
read sends a packet with file-handle, offset, and length
No open syscall; server has no list of open files. This
way there Is no state needed, can handle reboots.

e nfsroot
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CIFS/SMB

e Windows file sharing.
e Poorly documented

e Samba reimplements it, originally reverse-engineered.
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Virtual /Pseudo Filesystems

e Filesystem interface is an easy way for the OS kernel to
share information

e Can have files that do not exist on disk
they are virtual, fake files that the kernel creates
dynamically in memory

e Examples: /proc, /sys/, /debugfs, /usbfs

e There are often pushes for faster ways of getting this
data (netlink?)
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procfs

e Originally process filesystem. Each process gets a
directory (named by the process id (pid)) under /proc
ools like top and ps use this info.

cmdline

cwd
environ
exe

fd

maps

o O O O O O
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e Eventually other arbitrary files were also included under
proc, providing system information

fi
u
o AB

O
O
O
O
®)
O

cpuinfo
meminfo
Interrupts
mounts

esystems
btime

issues — these files are part of the kernel, and even

though the intention was that they could come and
go at will, enough people write programs that depend
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on them, the values cannot be easily changed without
breaking the ABI
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sysfs

e procfs was getting too cluttered, so sysfs was created

e intended to provide tree with information on devices

e one-item per file and strict documentation rule

e also hoped that it would replace sysct1l() and ioctl()
but that hasn't happened
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FUSE

e Allows creating filesystem drivers in userspace

e \Works on various OSes
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