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Announcements

• Homework #8 will be posted

• Don’t forget project update is due
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Advanced Filesystems
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XFS

• Developed by SGI for Irix. Many iterations since then

• Designed for high I/O throughput

• Extents-based and B+ trees

• XFSv5 newest version (v4 deprecated)

• Bigtime – timestamps 64 bit nanoseconds (good to 2486)

• Up to 8 exabytes
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btrfs

• Butter-fs? Butter-fuss? B-tree fs?

• Started in 2007 at Oracle (by Chris Mason, who had

worked on Reiserfs)

• Address scaling

• Lack of pooling, snapshots, checksums in Linux

◦ Pooling – preallocate resources so they can be quickly

handed out when needed

◦ Snapshots – instead of taking full backup (long) just

take a snapshot of current state and then keep using
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filesystem

◦ Checksums – mathematically check to make sure

values in files are what they should be

• 264 = 16 Exabyte file size limit (Linux VFS limits you to

8EB)

• Space-efficient packing small files

• Dynamic inode allocation
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btrfs details

• Primary data structure is a copy-on-write B-tree

◦ B-tree similar to a binary tree, but with pages full of

leaves

allow searches in logarithmic time

◦ Btrees also used by ext4, NTFS, HFS+

◦ Goal is to be able to quickly find disk block X

◦ Copy-on-write when writing to file, rather than over-

write (which is what traditional filesystems do)

◦ Since old data not over-written, crash recovery better
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Eventually old data garbage collected
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More btrfs details

• Data in extents

• Forest of trees:

◦ sub-volumes

◦ extent-allocation

◦ checksum tree

◦ chunk device

◦ reloc

• On-line defragmentation

• On-line volume growth

8



• Built-in RAID

• Transparent compression

• Snapshots

• Checksums on data and meta-data, on-line data

scrubbing

• De-duplication

• Cloning, reflinks

◦ can make an exact snapshot of file, copy-on-write

◦ different inodes, initially point to same blocks

◦ different from hardlink (different dir entry, point to

same inode)
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• In-place conversion from ext3/ext4

• Superblock mirrors – at 64k, 64MB,256GB, and 1PB.

All updated at same time. Has generation number.

Newest one is used.

10



ZFS (zettabyte fs)

• Advanced FS from Sun/Oracle

• 128-bit filesystem (opposed to btrfs which is 64-bit)

Running out of space would require 1024 3TB hard drives

• Not really included in Linux due to licensing issues

(CDDL vs GPL2)

Was originally proprietary, then open source, then

proprietary again (with open fork)

• Vaguely similar in idea to btrfs

• indirect still, not extent based?
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• Acts as both the filesystem *and* the volume manager

(RAID array)

• Aim is to be super reliable, to know the state of

underlying disks, make sure files stay valid, drives stay

healthy

• Can take snapshots. Can roll back if something goes

wrong.

• Checksums. Stored in parent. Other fs stores with file

metadata so if that lost then checksum also lost

• Limitations: needs lots of RAM and lots of free disk

space (due to copies and snapshots). If less than 80%
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free then goes to space-conserve mode rather than high-

performance

• Supports encryption (btrfs doesn’t yet)
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ReFS

• Resilient FS, codename “Protogon”

• Microsoft’s answer to btrfs and zfs

• Windows 8.1

• Initially removed features such as disk quotas, alt data

streams, extended attributes (added later?)

• Uses B+ trees (not same as b-trees), similar to relational

database

• All structures 64-bit

• Windows cannot be booted from ReFS
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APFS

• New Apple OS for High Sierra and later, iOS 10.3 later

• Fix core problems of HFS+

• Optimized for solid-state drive, encryption

• 64-bit inode numbers

• checksums

• Crash protection: instead of overwriting metadata,

creates new metadata, points to it, and only then

removes old

• No hard-links to directories (most other OSes are like
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this) but this breaks “Time Machine” backup

• HighSierra auto-converts flash-based drives
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Embedded

• Designed to be small, simple, read-only?

• romfs

• 32 byte header (magic, size, checksum,name)

• Repeating files (pointer to next [0 if none]), info, size,

checksum, file name, file data

• cramfs

• Filesystems optimized for flash storage?

17



Networked File Systems

• Can you have non-local filesystems, where files come

from a network server?

• Allow a centralized file server to export a filesystem to

multiple clients.

• Two ways to do this

◦ File level access, where syscalls are sent to the server

(like open, read, write)

◦ Block level access, where the remote server acts like

a block device and any OS can be run over it (NAS,
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network-attached storage)
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Cluster File Systems

• We learn about these in ECE574 Cluster Computing

• Distributed, fault tolerant, multiple servers working

together

• Things like Lustre
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Cloud Filesystems?

• Blur the lines

• Can appear to be part of a filesystem even though maybe

served over http requests

• You can actually make an httpfs if you want
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NFS – Network File System (NFS2/3/4)

• Developed by Sun in the 80s.

• Stateless. Means server and client can reboot without

the other noticing.

• A server, nfsd, exports filesystems as described in

/etc/exports. The server can be in userspace or

in the kernel

• Needs some sort of “file handle” unique value to specify

value. Often cheat and use inode value. Problem with

older version of protocol with only 32-bit handles.
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• UDP vs TDP

• Read-ahead can help performance

• Cache consistency a problem. One way is to just have

timeouts that flush data regularly (3-30s)

• List of operations (sort of like syscalls) sent to server

read sends a packet with file-handle, offset, and length

No open syscall; server has no list of open files. This

way there is no state needed, can handle reboots.

• nfsroot
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CIFS/SMB

• Windows file sharing.

• Poorly documented

• Samba reimplements it, originally reverse-engineered.
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Virtual/Pseudo Filesystems

• Filesystem interface is an easy way for the OS kernel to

share information

• Can have files that do not exist on disk

they are virtual, fake files that the kernel creates

dynamically in memory

• Examples: /proc, /sys/, /debugfs, /usbfs

• There are often pushes for faster ways of getting this

data (netlink?)

25



procfs

• Originally process filesystem. Each process gets a

directory (named by the process id (pid)) under /proc

Tools like top and ps use this info.

◦ cmdline

◦ cwd

◦ environ

◦ exe

◦ fd

◦ maps
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• Eventually other arbitrary files were also included under

proc, providing system information

◦ cpuinfo

◦ meminfo

◦ interrupts

◦ mounts

◦ filesystems

◦ uptime

• ABI issues – these files are part of the kernel, and even

though the intention was that they could come and

go at will, enough people write programs that depend
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on them, the values cannot be easily changed without

breaking the ABI
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sysfs

• procfs was getting too cluttered, so sysfs was created

• intended to provide tree with information on devices

• one-item per file and strict documentation rule

• also hoped that it would replace sysctl() and ioctl()

but that hasn’t happened
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FUSE

• Allows creating filesystem drivers in userspace

• Works on various OSes
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