
ECE 531 – Advanced Operating
Systems

Lecture 33

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 November 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Project topics were due

• HW#8 will be posted

• Note there will be a second midterm, in-class, on Friday

December 5th

1



Brief Midterm Notes

• Next Friday (December 5th)

• Not cumulative, will be mostly topics since last midterm

• Virtual Memory

• Filesystems

• Graphics

• Multicore / Locking

2



Project Update

3



Linux VFS

• VFS interface - VFS / Virtual Filesystem / Virtual

Filesystem Switch

• Makes all filesystems look like Linux filesystems. Might

need hacks; i.e. for FAT have to fake a superblock,

directory entries, and inodes (generate on the fly).

Can be important having consistent inode numbers as

filesystems like NFS use them even across reboots.

• Objects

◦ superblock

4



◦ inode object (corresponds to file on disk)

◦ file object – info on an open file (only exists in memory)

◦ dentry object – directory entry.

• Can use default versions, such as default llseek

• dentries are cached. As they get older they are freed.

• dentry operations table. hash. compare (how you handle

case sensitive filesystems)

5



Linux Filesystem Interface

• linux/fs.h

• Module. Entry point init romfs fs(), exit romfs fs()

– init romfs fs() – register filesystem()

name, romfs mount, romfs kill sb

– romfs mount – mount bdev(), romfs fill super

– sb− >s op=&romfs super ops();

– romfs iget() − > i op struct, gets pointed to in each

inode

6



mounting

• Opens superblock

• Inserts into linked list of opened filesystems

7



pathname lookup

• If begins with /, starts with current− >fs− >root

• otherwise, relative path, starts with current− >fs− >path

• looks up inode for starting directory, then traverses until

it gets to the one wanted

• the dentry cache caches directory entries so the above

can happen without having to do any disk reads if the

directory was used recently before

• the access rights of intervening directories must be

checked (execute, etc)

8



• symbolic links can be involved

• you might enter a different filesystem

• Should you cache invalid file lookups?

Programs that try to open the same nonexistent config

files on start, should we cache it doesn’t exist to speed

that up

9



open syscall

• getname() – safely copies name we want to open from

userspace process

• get unused fd() to get the file descriptor

• calls filp open()

◦ creates new file structure

◦ open namei() – checks dentry cache first, otherwise

hits disk and looks up dentry

◦ lookup dentry()

• validates and sets up the file

10



• returns a fd

11



What about our 531 OS?

12



531 OS – open

• open()

• sets up file descriptor, fill with info on file

◦ uint64 t file offset; where we are in reading

◦ struct *file ops;

◦ struct inode();

◦ count; (number of times opened)

◦ flags

◦ name

• file ops pointer to the file ops for the filesystem file is

13



on

◦ read()

◦ write()

◦ llseek()

◦ getdents()

◦ ioctl()

◦ open()

◦ flush()

◦ fcntl()

• inode struct

◦ device

14



◦ inode number

◦ count

◦ mode

◦ hard links

◦ uid/gid

◦ rdev

◦ size

◦ superblock pointer

• file struct allocates open file slot in array, returns a

number indicating which slot

• all I/O on this file descriptor

15



531 OS – doing a read

• read on file descriptor

• kernel looks up info using it as index

• get current offset to read from (file offset)

• superblock pointer says which filesystem on

• inode number used in conjunction with that to find the

file

◦ on romfs, just maps directly to block

◦ on fat32 will use it in conjunction with FAT

◦ on ext2, do indirect

16



531 OS – doing a write

• much more complicated

• if creating new file, has to allocate new directory entry.

allocate inode. allocate space for first block (all of

these can fail, then what? be sure to error handle and

deallocate properly)

• if write enough data to need new block, need to allocate

new block on filesystem and hook it up (in FAT, indirect,

etc)

• what if multiple programs writing to same file at once?

17



531 OS – deleting/truncating

• how do you delete a file?

18



Multi-Processing

• In the old days your computer had a single CPU/core

• That was relatively simple to deal with

• Modern systems (even small embedded systems) have

multiple cores

19



Hardware Concerns – Multi-Processing

• SMP/CMP (Symmetric or Chip Multi-processing): all

cores are identical

• Asymmetric: cores can have different features (see ARM

big.LITTLE or intel’s efficiency cores)

20



Hardware Concerns – Multi-Threading

• SMT (Simultaneous Multi-threading), Hyperthreading

(Intel)

• Pipelined processor might not be able to fill all pipelines

each cycle

• Add an extra instruction queue and have two programs

issuing instructions to the pipelines

• Less transistors than extra core but usually not as much

of a performance gain (can actually be worse!)

• OS often treats extra threads like extra processors for

21



scheduling purposes

22



Hardware Concerns – Memory

• Shared memory vs Distributed

Shared memory, a CPU can write a value to memory,

read it back and it will be different (another CPU can

write to it)

• How many copies of the OS? One per core or single

image? One per core is more like a cluster.

23



Hardware Concerns – NUMA

• In old days, single CPU with one single range of memory

• Modern CPUs, the memory controller (and DIMMs)

might be run by separate packages

• Some RAM is more distant from a core than others

• This leads to NUMA (non-uniform memory access),

some RAM takes longer to access

• OS should take this in account when starting processes

/ scheduling jobs

• UMA, NUMA, CC-NUMA (cache-coherent)

24



Multi-Processor Resource Sharing

• How are resources shared in SMP system?

• Any core can access any of the devices. Need locking.

25



Multi-Processor Interrupts

• Have one core handle all interrupts?

Might have better cache behavior

• Round-robin interrupts to each core?

Reduces load on core0 but hurts others.

• Balance interrupt load across processors?

26



Helper Threads

• Linux has kernel threads (look in top for things starting

with k or rcu).

• One of each type of thread per core

• Interrupt handlers have fast handler and worker threads.

27


