
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 7

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 grades out soon

• Homework #2 reading due Friday

1

HW#1 Review – Aggregate counts

• bzip2 benchmark – what does it do?

• 19 billion instructions +/- 1000 or so

(this is test input maybe?)

• 12 billion cycles +/- 100 million

why would cycles vary?

Better than last time

• Didn’t ask, but cycles/s = 3.3GHz or so (actual=2.6)

• Didn’t ask, but roughly what’s the IPC? 1.6 or so

• Reversed: similar for instructions but different for cycles

2

– HW2 will show you why I asked that

3

HW#1 Review – Sampling

• Perf record: 6.4s (why slower?)
39.19% bzip2 bzip2 [.] mainSort

30.53% bzip2 bzip2 [.] mainGtU

12.54% bzip2 bzip2 [.] handle_compress.isra.0

8.10% bzip2 bzip2 [.] generateMTFValues

7.72% bzip2 bzip2 [.] BZ2_compressBlock

• Valgrind, 1m28s == roughly 20 times slower?
8,150,804,034 (41.35%) blocksort.c:mainSort

5,619,003,640 (28.51%) blocksort.c:mainGtU

2,434,222,854 (12.35%) bzlib.c:handle_compress.isra.0

1,601,050,270 (8.12%) compress.c:generateMTFValues

1,511,856,286 (7.67%) compress.c:BZ2_compressBlock

• Gprof, 4.6s

4

Different results, using function entry instead of exact
instruction count for sampling?

time seconds seconds calls s/call s/call name

51.13 1.82 1.82 53 0.03 0.05 mainSort

20.65 2.56 0.74 89518573 0.00 0.00 mainGtU

13.48 3.04 0.48 53 0.01 0.01 generateMTFValues

7.02 3.29 0.25 12223 0.00 0.00 default_bzalloc

5.62 3.49 0.20 53 0.00 0.06 BZ2_compressBlock

5

HW#1 Review – Skid

• Skid instructions – mov is more likely than sub?
• movzbl = move 8-bit byte from memory into 32-bit long
register, zero extending

| n = ((Int32)block[ptr[unLo]+d]) - med;

1.17 | mov (%r11),%esi

0.78 | lea (%rbx,%rsi,1),%eax

1.51 | movzbl 0x0(%r13,%rax,1),%eax

5.47 | sub %r9d,%eax

| if (n == 0) {

1.77 | test %eax,%eax

instructions:uppp ppp = precise IP, how much skip 0=arbitrary,
1=constant, 2=request 0, 3=require 0

6

0.88 | mov (%r11),%esi

1.48 | lea (%rbx,%rsi,1),%eax

5.51 | movzbl 0x0(%r13,%rax,1),%eax

1.67 | sub %r9d,%eax

Can check Agner Fog’s page for how long instructions

might take, remember though they are best case and

cache misses on read/write can be much longer. (1

cycle cmp or sub, 3 cycles movz)

7

SMT Wrapup from last time

8

SMT Variations

• Fine-grained – rotate threads every cycle

• Coarse-grained – rotate threads only if long latency event

happens (cache miss)

• Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

9

SMT Push with Sun Niagara

• Remembering this as snagged one Yifeng was throwing

out

• They gave a bunch to universities back then (why?)

• 4, 6, or 8 cores each with 4 threads, a lot

• Only one FPU per core though (shared by 4 threads)

• Rock was the next gen even better, but cancelled at last

minute during Oracle takeover (was there at conference

where the guy was going to present)

10

SMT Downsides

• Can actually slow down code (especially if both threads

trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Security? Information Leakage?

• How wide (Sun Niagara aside)

11

Out-of-Order Processors

• Most modern cores do this, even many embedded these

days

• Finding a good writeup hard

• Many just tell you Tomasulo’s Algorithm, which was for

FPU out of order in 1960s IBM 360. Modern processors

don’t really do this.

12

Out-of-Order Processors

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to ensure that instructions commit in order

Need to make sure loads/stores happen in order.

13

OoO – Register Renaming

• Often parallelism restricted due to dependencies on small

number of architectural registers

• add r0 , r1 , r2

s t r0 , [r5]

add r0 , r3 , r4

s t r0 , [r6]

• Is there a dependency on r0? No, once written to you

don’t need to track the old value anymore

• Can have much larger physical register sets (80? 100?)

14

and assign these to instructions ready to execute

• Only map back to architecturally visible ones at

retirement

15

OoO – Ensuring In-order Retirement

• Need to track the original order instructions would retire

(graduate)

• Data structure? FIFO? Held there until all previous

instructions done, then can write back register values

and retire

• Some chips use re-order buffer (ROB)

• Intel chips used register renaming and register alias table

RAT

• historical: scoreboards and Tomosulu algorithm

16

OoO – Load/Store Buffer

• You want loads and stores to commit in order too

or do you?

• is there any harm in loads bypassing each other?

what about stores happening before loads?

• However if you have the results already, the values of

stores in the queue can be forwarded to loads reading

from same address

• Have to be careful if speculative execution

17

OoO – Load/Store Correctness

• Can be problem on systems with mmap I/O if loads

happen wrong order

• Stores bypassing can be bad, what if they can bypass a

lock?

• Solution? Memory barriers, special instructions that

make all loads/stores be resolved before continuing

• Varies a bit with memory model

◦ strong/sequential (x86)

◦ weak/relaxed (arm)

18

◦ doing things in software can be a pain, to make x86

emulation easier apple arm chips have a mode that

makes it more x86-like

19

Speculative Execution

• What do you do about branches?

They happen often

• Stall?

• Branch prediction, guess which way things go

• What happens when you’re wrong? Need to flush all the

pipelines and re-start

20

Precise Exceptions

• One example is skid from HW#1

• What happens on exception? (interrupt, branch

mispredict, etc)

• Many instructions “in-flight”, which one caused

exception?

• Need to find out which one did, then back things out so

can restart

• A lot of trouble

21

Benefits to OoO

• Can get a nice performance boost

22

Downside to OoO

• Security issues: spectre, meltdown

• A lot more complex than in-order

• Can waste power, especially if you re-execute or throw

out code due to speculative execution

23

Perf Counters related to Stalls

• Front-end stalls – fetch, decode, icache misses

• Back-end stalls – memory accesses

24

Real-World Pipelining Examples (from
P&H)

• ARM Cortex-A53 (found in Pi3)

◦ Eight-stage pipeline

◦ Dynamic multi-issue, two instructions

◦ Static in-order pipeline

◦ First 3 stages fetch two insns at a time, filling a

13-entry instruction queue (branch predictors)

◦ Pipelines: one for load, one for store, two for ALU,

one multiply, one divide, one FP/SIMD (mul/div/sqrt)

25

one FP/SIMD for other

◦ What’s the peak possible IPC?

◦ Patterson and Hennesey report SPEC CPU 2006 INT

results. Best case is hmmer (search for gene sequence)

with IPC 1.03 (CPI 0.97). Worst is mcf (public

transit vehicle scheduling) IPC 0.12 (CPI 8.56). Mostly

memory constrained.

◦ In-order so depends a lot on compiler to get good

performance.

◦ 100mW (1 core at 1GHz)

• Intel Core i7 920 (Nehalem, 2008)

26

◦ Decodes CISC instructions to micro-ops

◦ Can issue up to 6 micro-ops per cycle

◦ 14 pipeline stages

◦ dynamic out-of-order with speculation

◦ register renaming, useful with speculation, as no need

to store snapshot to undo speculation, just mark the

speculated register results as invalid

◦ Instruction fetch, fetches 16 bytes. If wrong, 15 cycle

penalty

◦ Predecode instruction buffer – transform 16 bytes (x86

insns 1-15 bytes) into x86 insns

27

◦ 18-instruction instruction queue.

◦ Micro-op decode – three decoders handle decode of

instructions that map to 1 uop. One other handles

microcode engine that produces longer sequences, up

to 4uops a cycle.

◦ Can also do micro-op fusion (fuse two different insns

into one uops, such as cmp/branch)

◦ Micro-ops go ins a 28-entry uop buffer

Loop Stream Detector – if code is in tight loop (less

than 28 insns) it can execute from this buffer and not

need to fetch.

28

◦ Instruction issue. Reservation station. Up to six uops

can be issued

◦ Finished instructions go back to reservation station

and retirement unit, wait to update register state when

determined it is no longer speculative.

◦ Once instruction hits the head of the reorder buffer,

instruction commits and is removed from re-order

buffer

◦ Even though 6 uops can issue, only 4 can be finished

a turn? What’s the peak IPC? (4)

◦ Again, SPECCPU. Best is libquantum IPC=2.2 (CPI

29

0.44). Worst, again, mcf IPC=0.37 (CPI=2.67)

◦ Where do the wasted cycles go? Stalls? But also

mis-speculation where work is done and then thrown

out.

◦ 130 Watts (2.66GHz)

30

