
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted

• Project was posted, check it out when you get the chance

• Midterm end of month

1



HW#5 Review – Cache Sizing

• This is for a desktop Haswell machine (the Haswell-EP

from homework actually has 46-bits of physical address

space)

• Side note: 64-bits is 16 Exabytes, 48 bits is 256TB, 44

bits is 16TB

• Haswell machine has a 44-bit physical address space (48

bit virtual), 32-kB L1 data cache, 8-way set associative,

64-bytes per line.

◦ Offset = 6 bits

2



◦ Index = 215/23/26 = 26 = 6 bits

Why does having 12 bits of offset+index makes VIPT

caches easier (4096 bytes)

◦ 44-6-6=32-bit tag

3



HW#5 Review – Cache Example

• People did more or less OK on this

4



HW#5 – Haswell-EP Memory Paramaters

• Xeon E5 2640-v3

• L1-icache 32k/8-way/64B

• L1-cache 32k/8-WAY/64B,4/5 cycles, writeback, shared

between threads

• L2 cache 256k/8-way/64B, 12 cycles, writeback

• L3 cache 20MB,64B, writeback

• (What doesn’t this say? replacement policy?

inclusive/exclusive? write-back?)

5



HW#5 – Haswell-EP bzip2

• Bzip: 11MB footprint

◦ L1-icache = 107k/19B = 0% miss rate

◦ L1-dcache-load = 314M/5.8B = 5.4% miss rate

◦ L2 = 208M/414M = 50% miss rate

◦ LLC 1k/143M = 0% miss rate

6



HW#5 – Notes on the events

• the kernel default for l1-cache is loads. this actually

changed in Linux 4.1 (17 Feb 2015) So your results will

change based on kernel version. Annoying. Before there

was a l1d-store events

• Should misses from one level of cache match accesses

from the next?

Shouldn’t L1-misses be same as L2-accceses?

Why would they not match up?

Bug in counters, not counting stores, bug in counter

7



selection, other things going on in system, shared

resources, chip errata, prefetching, etc. LLC actually

uses offcore-response events

8



HW#5 – Notes on bzip2 behavior

• Fits well in icache.

• Why is L2 so bad? single threaded? Prefetching

location?

• Why is L3 not accessed much? All of benchmark input

can fit in L3 cache so once data is loaded no need to go

to main memory.

9



HW#5 Review – equake l on Haswell-EP

• e-quake mem footprint 700MB

◦ L1-icache = 22M/1.4T = 0%

◦ L1-dcache = 33B/426B = 7%

◦ L2 = 26B/61B = 39%

◦ LLC = 2B/15B=14%

10



HW#5 – Notes on equake l behavior

• Again no issues with icache

• L3 much worse than bzip2, at least in part because the

working set size doesn’t fit in L3

11



HW#5 – Ampere

• eMAG 8180, interesting history

Not necessarily a high-end CPU

data sheet a bit confusing

◦ L1 i-cache=32 kB, 8-way?

◦ l1 d-cache=32 kB, 8-way?

◦ l2 = 256k shared for 2 cores

◦ L3 = 32MB, slow

12



HW#5 Review – bzip2 on Ampere

• L1-icache = 307k/7B = 0%

• L1-dcache-load = 235M/8B = 3%

• L2 = 186M / 1.3B = 14%

• L3? l3c0? = 2M/27M = 9%

13



Operating System VM interactions

14



Each process has a page table

• When you context switch, simply update the hardware

pointer to this

• On x86, CR3?

15



Memory Protection

• Can mark pages as read-only, execute-only, etc

◦ Code might want to be read-only

◦ Stack might want read/write but no-execute

◦ some of data segment (const) might be read-only

• Why?

16



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write

17



Virtual Memory – Cache Concerns

18



Cache Issues – Do Caches have Physical or
Virtual Addresses?

19



Physical Caches

Virtual Offset

TLB

Physical Offset

Tag IDX Off

Cache

20



Physical Caches, PIPT

• Location in cache based on physical address

• Can be slower, as need TLB lookup for each cache access

• No need to flush cache on context switch (or ever, really)

• No need to do TLB lookup on writeback

21



Virtual Caches

Virtual Offset

Cache

Tag IDX Off

Physical Offset

TLB

Writeback

22



Virtual Caches

• Location in cache based on virtual address

• Faster, as no need to do TLB lookup before access

• Will have to use TLB on miss (for fill) or when writing

back dirty addresses

• Cache might have extra bits to indicate permissions so

TLB doesn’t have to be checked on write

• Aliasing: Homonyms: Same virtual address (in multiple

processes) map to different physical page

◦ Must flush cache on context switch?

23



◦ How to avoid flushing? Have a process-id (ASID).

Can also implement sharing this way, by both processes

mapping to same virt address.

◦ Having kernel addresses high also avoids aliasing

• Aliasing: Synonyms: Phys address has two virtual

mappings

◦ Operating system might use page or cache coloring

• Operating system has to do more work.

24



VIPT

Virtual Offset

TLB

Physical

Cache

compare

tags

index

25



• Cache lookup and TLB lookup in parallel. Cache size +

associativity must be less than page size.

• If properly sized (so that the page offset fits completely

in the index) then index bits are the same for virt and

physical.

• If not sized, the extra index bits need to be stored in the

cache so they can be passed along with the tag when

doing a lookup

• No need to flush or track ASID on context switch

26



Combinations

• PIPT – older systems. Slow, as must be translated (go

through TLB) for every cache access (don’t know index

or tag until after lookup)

• VIVT – fast. Do not need to consult TLB to find data

in cache.

• VIPT – ARM L1/L2. Faster, cache line can be looked

up in parallel with TLB. Needs more tag bits.

• PIVT – theoretically possible, but useless. As slow as

PIPT but aliasing like VIVT.

27



Cache Issues – Page Tables are Cached

• Page table Entries are cached too

• What happens if more memory can fit in the cache than

can be covered by the TLB?

• If you have 128 TLB entries * 4kB you can cover 512kB

• If your cache is larger (say 1MB) then a simple walk

through the cache will run out of TLB entries, so page

lookups will happen (bringing page table data into cache)

and so you do not get maximal usefulness from the cache

• This has happened in various chips over the years

28



Wrap-up Summary

29



Quick run-through, the path of a load

• OoO, load buffer, etc

• VIPT. So on access it looks up the physical tag in TLB

while reading out the tags from each way with the index.

Also keep in mind MESI is going on at this level.

• If tag from TLB matches a tag from cache, hit! Good!

Cache hit!

• If tag in TLB but not in cache, cache miss.

• If tag not in TLB, TLB miss. Won’t know if cache hit

until later.

30



• Now let the hardware walk the page tables.

• If hardware finds the page, great! Return it back up to

the TLB

• If hardware can’t find the page, time to get the Operating

System involved. Page fault.

• Hardware has a list of what should be in memory where

(from the executable). Typically these are demand-

loaded

◦ Text/code – read from disk

◦ Data – read from disk

◦ BSS – allocate zeros

31



◦ Stack – if near top growing down, auto-grow

◦ Heap – similar to stack

◦ Shared page– could already be in memory (shared lib?)

Just need to point to it.

◦ Zeros – just have one page of zeros you can point to

◦ Paged out to disk – have offset in page file, need to

load it

• Time to bring in the page! Need to find room in Physical

RAM. If no room, need to make room. Possibly paging

out to disk (this is what LRU/dirty bits are used for).

What kind of issues come up when low on RAM and

32



constantly paging same pages in and out (thrashing?)

• Page now in physical RAM, time to go backwards.

Update the page table

• Fill in the TLB. Return to memory.

• If page fault occurred, usually re-execute the instruction.

• Issues

◦ Could you have race where you re-execute it and the

page had gotten swapped out again?

◦ Can we page out the page tables? What can go wrong

there? Double faults? How many nested page faults

can you handle?

33



Quick run-through, the path of a store

• Is it much different?

34


