
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 20

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Homework #4 and #5 grades were finally sent out

• Midterm Exam Next Wednesday

◦ Can bring one page of notes

◦ Benchmarking, skid, power/energy, energy delay,

branch predictors (static), caches, virtual memory

1



Homework Notes

• Cache miss rates typically reported in percent

• On the cache problem, a lot of people misread the line

on the last one, it was 1 not 0

2



Virtual Memory – Cache Concerns

• So where do the page tables live?

• They’re too big to live on the processor, they live in

RAM

• The operating system allocates/sets them up when

creating a process

• When the CPU walks the page tables, the accesses look

just like regular load/stores

• This means page tables can end up in the cache too

• Are the page tables able to be paged out to disk?

3



TLB Cache Coverage

• What happens if more memory can fit in the cache than

can be covered by the TLB?

• If you have 128 TLB entries * 4kB you can cover 512kB

• If your cache is larger (say 1MB) then a simple walk

through an array the size of the cache will run out of

TLB entries and have to walk the page tables

• This page walk can bring page data into the cache

• This can possibly take up / kick out actual useful data

from your cache, causing cache misses earlier than you

4



might expect

• This has happened in various chips over the years

5



Quick run-through, the path of a load
(CPU)

• Your code does a load in assembly language, from a

virtual address

• All of the out-of-order, pipelining, queueing, and such

happen

• The load address request is then sent to the caches

6



Path of a load (caches)

• Let’s assume VIPT cache

• The index is determined from the address and used to

look up the tags from the cache which are physical

addresses

• Simultaneously the virtual address is run through the

TLB to get the physical address

• If TLB hit and tag matches the address, CACHE HIT
and all is good

• If TLB hit but no tag match, CACHE MISS and just

7



as described in class it will try the other cache ways and

eventually if all misses, go to main memory

8



Path of a load (TLB Miss)

• If tag not in TLB, TLB miss. Won’t know if cache hit

until later.

• Now let the hardware walk the page tables.

• Based on a pointer to the page tables from the OS and

the virtual address from the load, the hardware walks

the page tables

• If hardware finds the page, great! Return it back up to

the TLB. The TLB will be updated (and like a cache

might need to make room). Then carry on with checking

9



for cache hit/miss

• If hardware can’t find the page, time to get the Operating

System involved. PAGE FAULT

10



Path of a load (Page Fault)

• A page fault is a special type of interrupt, and the

Operating System handles it

• For each process in the system the OS has a data

structure describing what parts of virtual memory are

valid and where to get the data from. These are often

demand loaded on first use.

◦ Text (code) – read from disk

◦ Data (initialized)– read from disk

◦ BSS (uninitialized or zeros) – allocate zeros

11



◦ Stack – if near top growing down, auto-grow

◦ Heap – similar to stack, grow up

◦ Shared page, or mmap() – could already be in memory

(shared lib?) Just need to point to it.

◦ What if page is invalid/not part of process? segfault!

◦ What if page has been paged out to disk? OS has to

bring it back (TODO: is this a page fault? how does

the OS record this info)

12



Path of a load (Bringing in a Page)

• Time to bring in the page!

• Need to find room in Physical RAM (OS has routines

for this)

• If no room, need to make room

◦ Often “page” to disk

◦ Has LRU/dirty bits like cache to try to only page out

oldest pages

◦ If page came from disk originally (like code from

executable) might not need to write to page file, can

13



possibly just reload it from source if needed again

◦ What kind of issues come up when low on RAM and

constantly paging same pages in and out (thrashing?)

14



Path of a load (Finishing a Page Fault)

• Page now in physical RAM, time to go backwards

• OS updates the page table to point to new memory

• OS returns from exception

• Typically processor re-executes the faulting instruction,

with the hope this time it is found in the page table and

everything is good

• Issues

◦ Could you have race where you re-execute it and the

page had gotten swapped out again?

15



◦ Can we page out the page tables? What can go wrong

there? Double faults? How many nested page faults

can you handle?

16



Copy on Write

• Can a physical page have multiple virtual addresses

pointing to it (yes, shared memory, libraries, etc)

• Copy on write – for fork and others, when copying pages,

instead of copying the page can just mark page read-

only and then have multiple virtual addresses point to

it. Much faster than copying memory

• If a process tries to write to page, will cause page fault

and the code can notice this and actually make the copy

and unshare that copy

17



• Zeros – for pages of zeros, could you get away with only

one read-only zeroed out page for entire system?

18



Quick run-through, the path of a store

• Is it much different?

19



Other Virtual Memory Issues

20



Reusing un-used bits at top of Virtual
Address

• People use them, causes problems later.

See M68k/MacOS, IBM 390, ARM26

• AMD64 canonical addresses to avoid this (top bits have

to be all zeros or all ones)

• Though recent systems support this, have a special mode

to “ignore” top bits

◦ Memory Tagging Extension (MTE) on ARM64

◦ Top Byte Ignore on ARM64

21



◦ Upper Address Ignore (UAI) on AMD64

◦ Linear Address Mask (LAM) on Intel

22



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

23



Large Pages – Modern Systems

• Alpha and maybe some MIPS supported 8k pages?

• Modern ARM64 has been pushing for 16k pages (class

project?)

• Intel by default only options are 4k, 2M, or 1G which

isn’t as useful

24



Transparent Huge Pages

• Can you use large pages (2M) for large allocations?

• Can you transparently merge many small pages to large,

and vice-versa?

• Complicate O/S and hardware.

• Big problem is with fragmentation, OS have to find free

blocks of contiguous memory when allocating large page.

• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

25



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Intel: PAE (Physical Address Extension)

• Linus Torvalds hates this.

• Hit an upper limit around 16-32GB because entire low

26



4GB of kernel addressable memory fills with page tables

• On x86 also useful because it provided more bits in PTEs

for things like non-execute permissions

27



Virtual Machines – Shadow Page Tables

• Virtualization, provide another layer between hardware

and OS

• Hypervisor lets you run multiple copies of OS, each

thinking they have full control of hardware

• Internal OS have page tables, but so does the real

hardware

• Various implementations to try to merge together to

28



avoid the double layer of abstraction when handling

page tables

29



Real World Examples

30



Haswell Virtual Memory

• ITLB

◦ 4kB: 128 entry, 4-way, dynamic between Hyperthreads

◦ 2MB/4MB: 8, fully assoc, duplicated ht

• DTLB

◦ 4kB: 64-entry, 4-way, fixed partition

◦ 2MB/4MB: 32 entry, 4-way

◦ 1GB: 4-entry, 4-way (!?)

• STLB (second level)

◦ 4kB/2MB: 1024 entry, 8-way

31



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• page table entries that support 4KB, 64KB, 1MB, and

16MB

• global and address space ID (no more TLB flush on

context switch)

• instruction micro-TLB (32 or 64 fully associative)

32



• data micro-TLB (32 fully associative)

• Unified main TLB, 2-way, 2x64 (128 total) on

pandaboard

• 4 lockable entries (why want to do that?)

• Supports hardware page table walks

33



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• Addresses can be 40bits virt / 32 physical

• First check FCSE – linear translation of bottom 32MB

to arbitrary block in physical memory (optional with

VMSAv7)

34



Cortex A9 TLB

• micro-TLB. 1 cycle access. needs to be flushed if ASID

changes

• fully-associative lockable 4 elements plus 2-way larger.

varying cycles access

35



Cortex A9 TLB Measurement

16 32 64 128 256 512

Matrix size

10000

100000

1000000

10000000

100000000

1000000000

10000000000

S
ta

ll
s

Dcache Stalls (r61)

TLB stalls (r83)

mTLB Stalls (r85)

L1 Cache Size

uTLB (32) Coverage

TLB (128) Coverage

L2 Cache

36


