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Announcements

• Homework #6 Due

• Homework #7 will be posted

• Midterm Exam Next Wednesday

◦ Can bring one page of notes

◦ Benchmarking, skid, power/energy, energy delay,

branch predictors (static), caches, virtual memory
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Real World Examples
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Haswell Virtual Memory

• ITLB

◦ 4kB: 128 entry, 4-way, dynamic between Hyperthreads

◦ 2MB/4MB: 8, fully assoc, duplicated ht

• DTLB

◦ 4kB: 64-entry, 4-way, fixed partition

◦ 2MB/4MB: 32 entry, 4-way

◦ 1GB: 4-entry, 4-way (!?)

• STLB (second level)

◦ 4kB/2MB: 1024 entry, 8-way
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Computer Architecture Security

• We’ve made fast chips, but at what cost?

• All the tricks to hide memory latency can introduce

information leaks

• This was actually known for a while, but the big names

in computer architecture didn’t take it seriously until

2018 when repeatable exploits were released
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Side Channel Attacks

• Leak info in unexpected ways

• With hardware access can tell what chip is doing based

on RF noise, temperature, power draw, etc

• Timing Attacks

◦ If can run code at same time someone else’s, info can

leak

◦ Measuring any shared resource can tell if someone

else is using it (caches, branch predictors, stalls on

hyperthreads, context switch times)
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◦ Any way of accurate time measurement (time syscalls,

hardware performance counters) lets you do this
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Side Channel Mitigations

• Hardware: shielding the hardware

• Writing timing-invariant code (for encrypting, the time

to encode a 0 and a 1 need to be exactly the same so

someone monitoring can’t tell the difference)

• Disable HW perf counters (sad), remove high-res timers

• Add random noise to some measurements
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Meltdown (January 2018)

• https://meltdownattack.com/

• Problem: speculative execution can load data into caches

even if you don’t have VM permissions to do so

• Many OSes map kernel into VM address space of each

process (this speeds up operating system calls a lot)

Kernel often includes a full mapping of physical RAM as

well

so in theory you can read out *all* of memory

• This primarily an Intel bug, all chips with speculative
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execution, dating back to Pentium Pro?

• Some very high-end ARM (Cortex A75) too as well as

IBM Power? *Not* AMD though.
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Cache Side-Channel Attacks

• Just loading speculative values into cache shouldn’t be

a problem as you can’t actually read the values

• UNLESS there is some sort of side-channel

• If you can use the speculative data as an index to a

memory load, you can bring yet another cache line in,

the line depending on the value you shouldn’t know.

• If you can determine if these lines are in cache you can

know the content of the data.
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Determining if a Cache line is in Cache

• Evict and Time – run and time. Then evict just one

line, then run again. If ran slower, it depended on data

in that line

• Prime and Probe – load cache full of your data. Wait

until code of interest runs. Then see how many of cache

lines got kicked out.

• Flush and Reload

◦ Single cache line granularity

◦ Use cflush or similar to kick out a cache line
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◦ Reload and time it, can tell if someone else had

reloaded it in the meantime by how fast it loads
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Meltdown – Toy Code
raise_exception ()

access(probe_array[data *4096])

• The access should never happen, as the exception

(segfault, etc) will trigger

• If exception slow enough, the access will likely be

speculatively executed

• In theory the results of the access are thrown out so you

cannot know it happened

• The speculative load might end up in the cache though,

and you can probe to see if it did
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• The *bug* is that on Intel chips you can speculatively

access kernel data from userspace and it will be cached

despite the permission mismatch.

• Why multiply by 4096? Spread across multiple pages so

the prefetcher doesn’t get in the way.
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Probing the Cache

• Secret data in cache, but how can you read it out from

a different process?

• Timing attack

• If you can speculatively execute something like
if (secret_data &1) load_one_address;

else load_few_cachelines_away_address;

You can then probe which one of those got loaded into

the cache with timing analysis, and now you know one

bit of the secret

• Repeat for all the bits of the secret data

15



Performance

• Up to 500K/s read out
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Meltdown – Issues

• Exception Handling – either a signal handler, or else

forking a child to cause the exception

• Exception suppression transactional memory

• Limitation: Can get false zeros. Repeat until sure.
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Workarounds

• Hardware

◦ Turn off out-of-order (not possible, expensive)

◦ Not allow user speculation to access kernel addresses

◦ Not put data into cache until permission check

completes

• Software

◦ KASLR (Kernel Address Space Layout Randomization).

If want arbitrarily read out kernel info need to find

kernel
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Turns out that with 40 bit address space and large

physical memory (8GB) it doesn’t take too many tries

to find kernel

◦ KAISER (KPTI) – map kernel in separate address

space.

Large overhead on switch in/out of kernel (syscalls,

context switch)

Up to 30% on some workloads, almost none on others

◦ PCID (intel’s ASID implementation on Westmere or

newer) helps avoid complete TLB flush
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Spectre Vulnerability

• Unlike Meltdown, pretty much *any* processor with

speculative execution affected

• Doesn’t leak info from kernel, but from one part of

program to another

• Why a problem? Well if javascript can read anything in

rest of browser (passwords, history, etc)

• SPECulative execution, will haunt us for ages
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Spectre – Depends on Branch Predictor

• You can reliably train branch predictor to hit/miss

• You can find if something is in the cache via timing

• Find a place in program where if it branches the wrong

way it accesses a value of interest

• Manipulate branch predictor so it always predicts this

taken

• Then go with an invalid value, but the predictor is trained

to try

• Time analysis to get results
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Spectre Variant 1 – Bounds Check
if (x<array1_size)

y = array2[array1[x]*256];

• Ideally finds this code already existing in user code

• If mispredicts the check, will speculatively access the

out-of-bounds value

• Attacker controls X

• Attacker trains the branch predictor that value is true

with lots of runs

• Then passes in a value that is wrong but branch is

predicted the previous way.
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• array1 size is not cached, so it stalls and execution goes

beyond

• Probe the cache much like meltdown
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Indirect Branches

• Instead of relying on user code, train up the BTB

• Doesn’t have to be the same address space, just has to

alias in the BTB

• On many machines only 30 or fewer bits of BTB used

to index

• You can then aim the BTB to point to anywhere in

memory code you want to speculatively execute
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Spectre Variant 2 – Branch Target Injection

• X maliciously chosen

• Branch prediction manipulated to predict wrong

• arrays all kicked out of memory

• array1size was kicked out of RAM, so cache miss and

slowly get value for RAM

• meanwhile predicts branch is good and so fetches

array2[k*256]

• Eventually figures out and squashes wrong branch, but

the fetch already underway into cache
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Finding a gadget

• Need to find code that runs with adversarial values are

in register

• Not hard, often unused values leak across function calls

(if a function doesn’t use them)

• Need to find way to trigger a branch in a way that acts

on these as pointers.

• Then find existing indirect jump

• Train the BTB to want to jump to our gadget

• clear out cache, perform attack
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Notes

• some i7 up to 188 instructions can execute speculatively

between

• can be triggered from Javascript. No clflush, but can

evict all of cache by reading through an array.

• branch predictors on cpus are independent?
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Workarounds

• Software

◦ Disable hires timers in javascript

◦ Memory barriers – can halt speculation with special

instructions, but have to insert them all through code

where it might be an issue.

◦ Kaiser/KPTI not help

◦ Retpoline and IBRS, see next slides
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Mitigation: New barriers

• Added by Intel with firmware update, new MSR

• IBRS – indirect branch restricted speculation

flush branch predictor on entry to kernel, disable brpred

on hyperthread

• STIBP – single-thread indirect branch prediction –

disable brpred on sibling thread (currently they share

brpred)

• IBPB – indirect br pred barrier – flush branch predictor

state
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Mitigation: retpoline

• Indirect branches can be used for spectre attack

• Can you (at a performance cost) change all indirect

branches to disable branch prediction?

• Original indirect call
jmp *%r11

• Replace with this:
call set_up_target ; skip ahead (ret addr on stack)

capture_spec:

pause; lfence ; trap to catch speculation

jmp capture_spec ; can’t speculate out
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set_up_target:

mov %r11 , (%rsp) ; overwrite ret addr with dest

ret ; call using ret (confuse brpred)

◦ Return trampoline

◦ Convert indirect branch into a ret in a common

location, makes it hard to train branch predictor.

◦ Also adds a code-trap so that if code speculates past

the branch it gets trapped in an infinite loop

◦ Downside: all indirect branches now slower retpoline.
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Are you vulnerable?

• On Linux look in /proc/cpuinfo

• Also can look in

/sys/devices/system/cpu/vulnerabilities
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Is it worth the mitigations?

• Mitigations can really slow down some processors. How

much? 10%? You’d have to check (this might make

good class project)

• If you’re on a trusted machine with no outside users and

you don’t run outside code (no web-browser/javascript)

maybe turn it off?
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Other security things in modern
architectures?

• SGX

• Making RAPL counters less accurate “energy filtering”

• Signed firmware

• Secure boot

• etc
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