ECE 571 — Advanced

Microprocessor-Based Design
Lecture 21

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

25 October 2024

https://web.eece.maine.edu/~vweaver

Announcements

e Homework #6 Due
e Homework #7 will be posted
e Midterm Exam Next Wednesday
o Can bring one page of notes
o Benchmarking, skid, power/energy, energy delay,
branch predictors (static), caches, virtual memory

Real World Examples

Haswell Virtual Memory

o [TLB
o 4kB: 128 entry, 4-way, dynamic between Hyperthreads
o 2MB/4MB: 8, fully assoc, duplicated ht
e DTLB
o 4kB: 64-entry, 4-way, fixed partition
o 2MB/4MB: 32 entry, 4-way
o 1GB: 4-entry, 4-way (!17)
e STLB (second level)
o 4kB/2MB: 1024 entry, 8-way

-y 3

Computer Architecture Security

e \We've made fast chips, but at what cost?

e All the tricks to hide memory latency can introduce
information leaks

e [his was actually known for a while, but the big names
In computer architecture didn't take it seriously until
2018 when repeatable exploits were released

Side Channel Attacks

e | eak info in unexpected ways
e With hardware access can tell what chip is doing based
on RF noise, temperature, power draw, etc
e Timing Attacks
o If can run code at same time someone else’s, info can
leak
o Measuring any shared resource can tell if someone
else is using it (caches, branch predictors, stalls on
hyperthreads, context switch times)

-y 5

o Any way of accurate time measurement (time syscalls,
hardware performance counters) lets you do this

Side Channel Mitigations

e Hardware: shielding the hardware

e Writing timing-invariant code (for encrypting, the time
to encode a 0 and a 1 need to be exactly the same so
someone monitoring can't tell the difference)

e Disable HW perf counters (sad), remove high-res timers

e Add random noise to some measurements

Meltdown (January 2018)

e https://meltdownattack.com/

e Problem: speculative execution can load data into caches
even if you don't have VM permissions to do so

e Many OSes map kernel into VM address space of each
process (this speeds up operating system calls a lot)
Kernel often includes a full mapping of physical RAM as
well
so in theory you can read out *all* of memory

e This primarily an Intel bug, all chips with speculative

-y g

https://meltdownattack.com/

execution, dating back to Pentium Pro?
e Some very high-end ARM (Cortex A75) too as well as
IBM Power? *Not™* AMD though.

Cache Side-Channel Attacks

e Just loading speculative values into cache shouldn’t be
a problem as you can't actually read the values

e UNLESS there is some sort of side-channel

e If you can use the speculative data as an index to a
memory load, you can bring yet another cache line In,
the line depending on the value you shouldn’t know.

e If you can determine if these lines are in cache you can
know the content of the data.

-y 10

Determining if a Cache line is in Cache

e Evict and Time — run and time. Then evict just one
line, then run again. If ran slower, it depended on data
in that line

e Prime and Probe — load cache full of your data. Wait
until code of interest runs. Then see how many of cache
lines got kicked out.

e Flush and Reload
o Single cache line granularity
o Use cflush or similar to kick out a cache line

-y 11

o Reload and time it, can tell if someone else had
reloaded it in the meantime by how fast it loads

-y 12

Meltdown — Toy Code

raise_exception ()
access (probe_array[data*x4096])

e The access should never happen, as the exception
(segfault, etc) will trigger

o If exception slow enough, the access will likely be
speculatively executed

e In theory the results of the access are thrown out so you
cannot know it happened

e [he speculative load might end up in the cache though,
and you can probe to see if it did

-y 13

e The *bug* is that on Intel chips you can speculatively
access kernel data from userspace and it will be cached
despite the permission mismatch.

e \Why multiply by 40967 Spread across multiple pages so
the prefetcher doesn't get in the way.

-y 14

Probing the Cache

e Secret data in cache, but how can you read it out from
a different process?

e [iming attack

e If you can speculatively execute something like

if (secret_data&l) load_one_address;
else load_few_cachelines_away_address;

You can then probe which one of those got loaded into
the cache with timing analysis, and now you know one
bit of the secret

e Repeat for all the bits of the secret data

-y 15

Performance

e Up to 500K /s read out

16

Meltdown — Issues

e Exception Handling — either a signal handler, or else
forking a child to cause the exception

e Exception suppression transactional memory

e Limitation: Can get false zeros. Repeat until sure.

-y 17

Workarounds

e Hardware
o Turn off out-of-order (not possible, expensive)
o Not allow user speculation to access kernel addresses
o Not put data into cache until permission check
completes
e Software
o KASLR (Kernel Address Space Layout Randomization).
If want arbitrarily read out kernel info need to find
kernel

/Y 18

Turns out that with 40 bit address space and large
physical memory (8GB) it doesn’t take too many tries
to find kernel
o KAISER (KPTI) — map kernel in separate address
space.
Large overhead on switch in/out of kernel (syscalls,
context switch)
Up to 30% on some workloads, almost none on others
o PCID (intel's ASID implementation on Westmere or
newer) helps avoid complete TLB flush

-y 19

Spectre Vulnerability

e Unlike Meltdown, pretty much *any* processor with
speculative execution affected

e Doesn’'t leak info from kernel, but from one part of
program to another

e Why a problem? Well if javascript can read anything in
rest of browser (passwords, history, etc)

e SPECulative execution, will haunt us for ages

-y 20

Spectre — Depends on Branch Predictor

e You can reliably train branch predictor to hit/miss

e You can find if something is in the cache via timing

e Find a place in program where if it branches the wrong
way it accesses a value of interest

e Manipulate branch predictor so it always predicts this
taken

e [hen go with an invalid value, but the predictor is trained
to try

e [ime analysis to get results

/Y 21

Spectre Variant 1 — Bounds Check

if (x<arrayl_size)
y = array2larrayl[x]*256];

e Ideally finds this code already existing in user code

e If mispredicts the check, will speculatively access the
out-of-bounds value

e Attacker controls X

e Attacker trains the branch predictor that value is true

with lots of runs
e Then passes in a value that is wrong but branch is

predicted the previous way.

-y 2

e arrayl_size is not cached, so it stalls and execution goes
beyond
e Probe the cache much like meltdown

-y 23

Indirect Branches

e Instead of relying on user code, train up the BTB

e Doesn't have to be the same address space, just has to
alias in the BTB

e On many machines only 30 or fewer bits of BTB used
to index

e You can then aim the BTB to point to anywhere In
memory code you want to speculatively execute

-y 24

Spectre Variant 2 — Branch Target Injection

e X maliciously chosen

e Branch prediction manipulated to predict wrong

e arrays all kicked out of memory

e arraylsize was kicked out of RAM, so cache miss and
slowly get value for RAM

e meanwhile predicts branch is good and so fetches
array2[k*256]

e Eventually figures out and squashes wrong branch, but
the fetch already underway into cache

-y 25

Finding a gadget

e Need to find code that runs with adversarial values are
In register

e Not hard, often unused values leak across function calls
(if a function doesn’t use them)

e Need to find way to trigger a branch in a way that acts
on these as pointers.

e Then find existing indirect jump
e Train the BTB to want to jump to our gadget
e clear out cache, perform attack

/Y 26

Notes

e some I/ up to 188 instructions can execute speculatively
between

e can be triggered from Javascript. No clflush, but can
evict all of cache by reading through an array.

e branch predictors on cpus are independent?

-y 21

Workarounds

e Software
o Disable hires timers in javascript
o Memory barriers — can halt speculation with special
Instructions, but have to insert them all through code
where it might be an issue.
o Kaiser/KPTI not help

o Retpoline and IBRS, see next slides

-y 28

Mitigation: New barriers

e Added by Intel with firmware update, new MSR

e IBRS — indirect branch restricted speculation
flush branch predictor on entry to kernel, disable brpred
on hyperthread

e STIBP — single-thread indirect branch prediction —
disable brpred on sibling thread (currently they share
brpred)

e IBPB — indirect br pred barrier — flush branch predictor
state

/Y 29

Mitigation: retpoline

e Indirect branches can be used for spectre attack
e Can you (at a performance cost) change all indirect
branches to disable branch prediction?
e Original indirect call
jmp *%riil

e Replace with this:

call set_up_target ; skip ahead (ret addr on stack)
capture_spec:

pause; lfence ; trap to catch speculation

jmp capture_spec ; can’t speculate out

-y 30

set_up_target:
mov %hril, (%rsp) ; overwrite ret addr with dest
ret ; call using ret (confuse brpred)

o Return trampoline

o Convert indirect branch into a ret in a common
location, makes it hard to train branch predictor.

o Also adds a code-trap so that if code speculates past
the branch it gets trapped in an infinite loop

o Downside: all indirect branches now slower retpoline.

-y 31

Are you vulnerable?

e On Linux look in /proc/cpuinfo
e Also can look in
/sys/devices/system/cpu/vulnerabilities

32

Is it worth the mitigations?

e Mitigations can really slow down some processors. How
much? 10%?7 You'd have to check (this might make

good class project)
e If you're on a trusted machine with no outside users and

you don’t run outside code (no web-browser/javascript)
maybe turn it off?

/Y 33

Other security things in modern
architectures?

e SGX

e Making RAPL counters less accurate “energy filtering”
e Signed firmware

e Secure boot

® cicC

-y 34

