
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 33

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 December 2024

https://web.eece.maine.edu/~vweaver


Project/HW Reminder

• Homework #11 will be posted, Nvidia Reading

• Sent the proposed presentation schedule

1



From Last Time – Flash

• TLC flash

• Regular, MLC, TLC, QLC... the transistor used is exactly

the same

• For TLC they just store 3 bits in the same sized transistor

• This is why TLC and QLC are denser but can perform

worse

• Essentially what happens, there’s a second gate on the

transistor. When you program it you inject electrons into

the second gate which changes the switching voltage of

2



the transistor. By allowing more states between on/off

you can store more bits

• Storing more bits is tricky, more error prone, and it tends

to wear out faster. Also slower to program as you have

to make sure you’ve got the exact level you are aiming

for.

3



A Brief History of Computer Graphics

4



Old CRT Days

• First graphic displays essentially oscilloscopes

• Electron gun shooting at glass covered in phosphor

• Vector displays: change X and Y of beam with magnets

• TV type displays: beam draws rectangular screen at

roughly 60Hz (it’s complicated)

• Horizontal Blank at end of line as beam returns to left

• Vertical Blank at end of screen as beam returns to top

• TODO: diagram

5



Ideally you’d have a Framebuffer

• Bitmap in memory where grid of bits would say what

color each pixel on screen should be

• In early days this was expensive.

◦ Apple II: 140x192x6 colors = 8k

◦ MCGA (VGA mode 13h): 320x200x256 colors = 64k

◦ 1024x768x256: roughly 1MB

6



Early Hardware Limitations

• Atari 2600 – only enough RAM to do one scanline at a

time, had to “race beam”

• Apple II – video on alternate cycles, refresh RAM for

free, 8k bitmap for 140x192x6 colors

7



Memory Limitations – Limited Bandwidth

• Use lookup tables. Palettes, a number in the bitmap and

can have maybe 256 colors from a palette of millions

(if clever, change this per scanline to gets lots on screen

at once)

• Memory planes (EGA, VGA), to speed up access can

have R/G/B colors in separate memory banks and read

out in parallel. Code had to split up drawing across the

bitplanes which was complex/slow

• Tilemaps (NES, SNES), instead of framebuffer, have

8



tilemap with grid of tiles, the value looks up into a tile

table that has a set of bitmaps. Faster and use less

memory than full framebuffer

9



Early Graphics Acceleration

• Sprites – small bitmaps that can be moved on screen

• Scrolling – pan across memory to quickly scroll screen

• Copper – small co-processor can modify graphics

independent of main CPU

• 2d acceleration – drawing lines, rectangles, mouse cursor

10



Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay

11



Old 3D History

• At first only in high-end workstations (like SGI)

• Gradually came to PCs for gaming (original 3D games

in software, all on CPU)

• 3dfx cards, with passthrough cable

• Became more mainstream

• NVIDIA and ATI (bought by AMD)

12



3D Graphics

• Two common ways to do 3D graphics

◦ Ray tracing, very accurate, but slow

◦ Rasterization, low quality, but fast enough to do in

real time

• Can do either completely in software on CPU (and people

did), but much faster if you accelerate with hardware

13



Ray-tracing / Ray-casting

• TODO: diagram

• Objects placed in 3d space

• Rays of light traced from eye through each pixel on

screen until hit object

• Based on material they hit, reflect, refract, take on color,

etc

• Can do reverse where light source sends out rays and

you bounce them around until they hit pixel on screen

14



Question: how does Hardware Raytrace
work

• Accelerate in hardware ray-tracing, though usually only

partially

• NVIDIA: Optix Library

• You describe how rays behave

• Details are a bit hard to get

15



Ray-marching

• Just a place holder, it’s a related technique often used in

size-coded demoscene productions and I’ve been meaning

to learn more about it

16



Rasterization

• TODO: show diagram

• Objects made up of many triangles (or quads)

• Send vertices to card

• Project to 2d screen

• Broken up to pixels and shaded/textured

Color/shading based on angle with light source (normals)

• Clipping, depth

17



Rasterization on GPU

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

18



read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

19



Rasterization Downsides

• Can’t calculate shadows (have to do hacks)

• Can’t easily do reflections (mirrors), transparency or

refraction (water, lenses, glass spheres)

• On the plus side it is fast

20



GPU Pipeline

• Old / Traditional

◦ Implement rasterization in fixed hardware

◦ Fixed pipeline (lots of triangles).

• Modern

◦ Much more flexible, programmable almost general-

purpose compute units

◦ Old pipeline can still be implemented in software via

the fancier interface

21



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

22



GPGPUs

• Can we use GPUs as an accelerator?

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

23


