
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 1

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

15 January 2013



Introduction

• Distribute and go over syllabus

• Talk about the class

1



Advanced Topics in Embedded Systems

2



What is an embedded system?

• Embedded. Traditionally fixed-purpose controller.

• Resource constrained. Small CPU, Memory, Display,

Bandwidth

• Often real-time constraints.

3



What Size CPU/Memory?

• Anything from 8-bit/tiny RAM to 32-bit 1GHz 1GB

• Expanded widely over the years. ARM Cortex A9 in

an iPad2 scores same on Linpack as an early Cray

supercomputer

4



Pushing the Limits

5



What Processors Commonly Used?

As reported by IDC at the SMART Technology

conference in San Francisco for 2011

• ARM 71%

• MIPS 11%

• Other 9%

• x86 8% (at least Intel’s desperately trying)

• Power 2%

6



We’ll Use ARM

• Commonly used

• You’ll see if it you move to industry

• Other classes in ECE are moving to it (271,471)

7



We’ll Use Linux

• Because I like it and understand it best

• Source code available

• Well-developed tools

• The ARM machine I have runs it

8



Computer Architecture Review

• In-order Processors – Old 8-bits

• Super-scalar – multiple instructions “in-flight” at once.

Original Pentium

• Out-of-order – Pentium Pro and Newer, Arm Cortex A15

9



RISC / CISC / VLIW

• RISC: Reduced Instruction Set Computer

Small set of instructions to make processor design

simpler. Usually fixed-length instructions, load/store

• CISC: Complex Instruction Set Computer

Wide ranging complicated instructions; have complicated

CPU decode circuitry. Often variable length instructions.

Often allow operating on memory directly.

• VLIW: Very Long Instruction Word

10



Instructions come in long “bundles”, often 3 at a time.

Cannot have dependencies; may have to fill with “nops”.

Allows compiler to exploit inherit parallelism in code

(most modern CPUs do this in hardware instead, VLIW

puts this complexity in software).

11



CISC/RISC/VLIW Examples

• MIPS is RISC: roughly only 40 integer instructions ,

(more if you include FP)

• x86 is CISC: hundreds of complicated instructions,

including ones that access memory, auto-increment

registers, have complex shift/add address modes

• Hybrid: ARM or Power started out RISC but have

accumulated more complicated instructions over time

12



• x86, while CISC externally, internally decodes to a RISC-

like code before executing

13



How a Program is Loaded

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

14



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

15


