
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 2

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

17 January 2013

Build up to ARM Assembly Language

1

Assembly Language: What’s it good for?

• Understanding at a low-level what your computer is

doing. It separates the Computer Engineers from the CS

majors.

• Shown when using a debugger

• Compiler writers must translate higher languages to

assembly

• Operating system writers (some things not expressible in

C)

2

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

3

Benefits of Using Linux for Assembly
Programming

• Tools! In-place debugging tools

• Flat 32-bit address space

• I/O, timing, device drivers, all handled for you

• The O/S acts as a cross-platform abstraction layer

4

Other OSes

If the architecture is the same, the assembly language is

the same.

All that changes is how you call the O/S.

• Writing to bare-metal

• iOS, to a limited extent Android

5

Tools

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

6

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmtypRd

RnS0 1 0 00 0 0cond

imm5 0

7

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

8

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

9

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

10

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

11

What a program’s memory layout looks like

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

12

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

13

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

14

Brief overview of Virtual Memory

• Each program gets a flat 4GB (on 32-bit) memory space.

The CPU and Operating system work together to provide

this, even if not that much RAM is available and even

though different processes seem to be using the same

addresses.

• Physical vs Virtual Memory

• OS/CPU deal with “pages”, usually 4kB chunks of

memory.

15

• Every mem access has to be translated. The operating

system looks in the “page table” to see which physical

address your virtual address maps to.

This is slow. That’s where TLB comes in; it caches

pagetable translations. As long as you don’t run out of

TLB entries this goes fast.

• Demand paging: the OS doesn’t have to load pages

into memory until the first time you actually load/store

them.

• Context Switch: when you switch to a new program,

16

the TLB is flushed and a different page table is used to

provide the new program its own view of memory.

17

Loader

• /lib/ld-linux.so.2

• loads the executable

18

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

19

How a Program is Loaded

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

20

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

21

What you have at entry

• Registers

• Instruction pointer at beginning

• Stack

• command line arguments, aux, environment variables

• Large contiguous VM space

22

Things to determine when writing assembly

• Can find this in reference books. Manuals online for free

Intel 64 and IA-32 Architectures Developer’s Manual,

huge. Similar from AMD. ARM ARM.

• Instruction names (and what they do)

• Number of registers, Register names (or aliases),

orthogonality of registers.

• ABI: Registers uses (which to save, which are parameters,

23

stack pointer, instruction pointer, zero pointer, multiply

results, floating point, return address)

• Endianess

• How to make a syscall

• if opcode takes 2 or 3 arguments

• Load/store vs otherwise

• Flags / Condition Codes

• instruction width

24

• Addressing Modes

25

Weirder features to watch for

• Register windows

• branch delay slot

• predication

• unaligned loads

• byte access (alpha)

• HW divide

26

• zero register

• sign-extend (especially x86 vs x86 64)

27

