
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 5

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

29 January 2013

Performance Analysis

1

First some Last ARM Assembly

2

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

3

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

4

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

5

Introduction to Performance Analysis

6

What is Performance?

• Getting results as quickly as possible?

• Getting correct results as quickly as possible?

• What about Budget?

• What about Development Time?

• What about Hardware Usage?

• What about Power Consumption?

7

Motivation for HPC Optimization

HPC environments are expensive:

• Procurement costs: ∼$40 million

• Operational costs: ∼$5 million/year

• Electricity costs: 1 MW / year ∼$1 million

• Air Conditioning costs: ??

8

Know Your Limitation

• CPU Constrained

• Memory Constrained (Memory Wall)

• I/O Constrained

• Thermal Constrained

• Energy Constrained

9

Performance Optimization Cycle

Code

Develop

Usage /
Production

Modify / Tune

Analyze

Measure

Functionally Complete/
Correct Code

Correct/Optimized Code
Functionally Complete/

10

Wisdom from Knuth

“We should forget about small efficiencies, say about 97%

of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that

critical 3%. A good programmer will not be lulled into

complacency by such reasoning, he will be wise to look

carefully at the critical code; but only after that code has

been identified” — Donald Knuth

11

Amdahl’s Law

Time

Original

Speed up Blue 100x

Speed up Red 2x

12

Gathering Performance Info

• User Level (instrumentation)

• Kernel Level (kernel metrics)

• Hardware Level (performance counters)

13

User Level: Profiling vs Tracing

14

Profiling and Tracing

Profiling
• Records aggregate performance metrics

• Number of times routine invoked

• Structure of invocations

Tracing
• When and where events of interest took place

• Time-stamped events

• Shows when/where messages sent/received

15

Profiling Details

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

16

Tracing Details

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps

17

Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

18

Software Tools for Performance Analysis

19

Simulators

• Architectural Simulators

• Can generate traces, profiles, or modeled metrics

• Slow, often 1000x or more slower

• Not real hardware, only a model

• Did I mention, slow?

• m5, gem5, simplescalar, etc

20

Dynamic Binary Instrumentation

• Pin, Valgrind (cachegrind), Qemu

• Still slow (10-100x slower)

• Can model things like cache behavior (can model

parameters other than system running on)

• Complicated fine-tuned instrumentation can be created

• Architecture availability – Pin (no longer ARM),

Valgrind, Qemu most architectures, hardest to use

21

Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

22

time based measurements.

• Pro: available wherever gcc is.

23

Hardware Tools for Measuring Performance

24

What are Hardware Performance Counters?

• Registers on CPU that measure low-level system

performance

• Available on most modern CPUs; increasingly found on

GPUs, network devices, etc.

• Low overhead to read

25

Hardware Implementation of Counters

• Not much documentation available

• Jim Callister/Intel: “Confessions of a Performance

Monitor Hardware Designer” 2005, Workshop on

Hardware Performance Monitor Design

– Transistors free, wires not. Also design time,

validation, documentation, time to market. PMU has

tentacles “everywhere” bringing data back to center.

– Architect too much, lower performance, events don’t

26

map well to hardware. Architect too little.. software

design harder.

– Which events are important? Are cache misses

important if don’t hurt performance? (no stalls)

– Mapping events to signal difficult. On critical path.

Not enough wires. Combining signals hard if distance

between wires.

– Use logging. May miss events in “shadow” of another

event being logged. Use random behavior?

27

Other Concerns

• Power/Energy: on CMOS P=ACV**2f

A = activity, C = capacitance, V=voltage, f = frequency

fast-running counter increments every cycle, high activity

28

Learning About the Counters

• Number of counters varies from machine to machine

• Available events different for every vendor and every

generation

• Available documentation not very complete (Intel Vol3b,

AMD BKDG, ARM ARM/TRM)

29

Low-level interface

• on x86: MSRs

• ARM: CP15 system control register

30

CP15 registers on Cortex A9

• 6 counters available

• 58 events, 17 architectural, 41 A9 Specific, split between

Approximate, Precise

• No way to specify kernel vs user (Cortex A15 does?)

• Cortex A9 has bug where PMU interrupts may be lost

31

CP15 Interface

• use mcr, mrc to move values in/out

MRC p15,0,Rt,c9,c12,0

MCR p15,0,Rt,c9,c12,0

• Six EVNTCNT registers

• Cycle Counter register

• Six Event Config registers

• Count enable set/clear, count interrupt enable/clear,

32

overflow, software increment

• PMU management registers

• in general only privileged access (why) but can be

configured to let users access.

33

Registers

• PMCR – IMP/IDCODE (about implementer), N

(number of counters, up to 32), Disable when prohibited

(avoid counting in sensitive zones), X (export results to

external debug hardware), D clock divider (optionally

only count every 64th clock), Reset clock, reset all

events, enable all events

• ENSET – bitfield enabling events, also on read tells if all

enabled

34

• ENCLR – bitfield clearing events, disables the counters

• PMOVSR – overflow flags for all events

• SWINC – increment software counter

• PMSELR – selects “current” counter

• PMCCNTR – set/read cycle counter value

• EVTYPER – sets which event is used for counter

• EVCNTR – set/read event counter value

35

• USERENR – allow user access to counters

• INTENSET – enable bits for overflow interrupts

• INTENCLR – clear bits for overflow interrupts

36

Overflow

• overflows after reaching 2**32

• If want to overflow earlier, init to a high value. So

0xc0000000 to overflow at 1 billion

37

