
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 8

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

7 February 2013

Hardware Performance Counters – Software
Tools

1

PAPI (Performance API)

• Low-level Performance Measurement Interface

• Cross-platform

• Self-monitoring or Sampling

• C, C++, Fortran (or attach to running process)

• Basis for more advanced visualization tools. Vampir,

Tau, PerfExpert, etc.

2

• Provides high-level access to timers

• Provides high and low-level access to performance

counters

• Provides profiling support

• Provides system information

• Components

• Fine-grained instrumentation

3

PAPI Limitations

• Limitations: In general have to modify source code

• Limitation: Overhead included in program run

4

PAPI Platforms

• Linux perf event

• Linux perfmon2/perfctr (mostly deprecated except Cray)

• IBM BlueGene P/Q

• Solaris

• FreeBSD

• IBM AIX

5

PAPI CPUs

• x86, MIC

• ARM

• Power

• SPARC

• Itanium

• MIPS

6

PAPI Components

• Appio – I/O bandwidth

• BGPM – IBM Bluegene extra

• Coretemp – chip temp sensors, etc.

• CUDA – NVidia GPU

• Infiniband – high-speed network

• lmsensors – chip sensors

7

• lustre – parallel filesystem

• micpower – power on Intel MIC (Xeon PHI)

• MX – myrinet, high-speed network

• net – generic Linux network

• NVML – Nvidia power

• RAPL – Intel Sandybridge/Ivybridge Power

• Stealtime – Virtual Machine stealtime

8

• VMware – VMware stats

9

PAPI Tools

Note, unlike perf PAPI is rarely installed by default.

• papi component avail – list all components on system

• papi avail – list all predefined events

• papi native avail – list all native events

10

PAPI Instrumentation

Code has to be instrumented and linked against PAPI

library.

Usually this is done manually, but some tools can do

this automatically via binary instrumentation.

11

PAPI Timers

#include "papi.h"

int main(int argc , char **argv) {

int retval;

long long start_real_usecs ,end_real_usecs;

long long start_virt_usecs ,end_virt_usecs;

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT) {

fprintf(stderr ,"Wrong PAPI version\n");

}

start_real_usecs = PAPI_get_real_usec ();

start_virt_usecs = PAPI_get_virt_usec ();

naive_matrix_multiply (0);

12

end_real_usecs = PAPI_get_real_usec ();

end_virt_usecs = PAPI_get_virt_usec ();

printf("Elapsed real: %lld\n",

end_real_usecs -start_real_usecs);

printf("Elapsed virt: %lld\n",

end_virt_usecs -start_virt_usecs);

return 0;

}

13

PAPI get real usec() vs
PAPI get virt usec()

• PAPI get real usec()

wall-clock time

maps to clock gettime(CLOCK REALTIME)

• PAPI get virt usec()

only time process is actually running

maps to clock gettime(CLOCK THREAD CPUTIME ID)

14

Measuring Predefined Event

• We’ll use the PAPI TOT INS pre-defined counter

• On Sandybridge this maps to INSTRUCTION RETIRED

• Currently PAPI can have more elaborate pre-defined

events than perf (can do linear combinations, etc).

15

PAPI TOT INS Measurement

#include "papi.h"

int main(int argc , char **argv) {

int retval ,event_set=PAPI_NULL;

long long count;

retval = PAPI_library_init(PAPI_VER_CURRENT);

if (retval != PAPI_VER_CURRENT)

fprintf(stderr ,"Wrong PAPI version\n");

retval = PAPI_create_eventset(&event_set);

if (retval != PAPI_OK)

fprintf(stderr ,"Error creating eventset\n");

retval = PAPI_add_named_event(event_set ,

"PAPI_TOT_INS");

16

if (retval != PAPI_OK)

fprintf(stderr ,"Error adding event\n");

retval = PAPI_start(event_set);

naive_matrix_multiply (0);

retval = PAPI_stop(event_set ,& count);

printf("Total instructions: %lld\n",count);

return 0;

}

17

Results

vince@vincent-weaver-1:~/class$./matrix_multiply.papi

Matrix multiply sum: s=27665734022509.746094

Total instructions: 945573824

18

PAPI Overflow

• PAPI Can do overflow, but only provides RAW Program

Counter

• Need external tool if want more detailed info

19

Performance Measurement Methodologies

• Aggregate Count – overall, total counts

• Profiling – measure at beginning of function.

gprof, Valgrind Callgrind.

records every entry/exit into a function, knows full

backtrace

• Statistical Sampling – samples at rate of some sort of

periodic counter

perf record, oprofile

20

can completely miss important functions if unlucky,

harder to get backtrace

21

Inclusive vs Exclusive

• Exclusive only lists time spent in actual function

• Inclusive includes time spent in all child functions

22

Performance Counters and Java

This was asked about at the end of the last class.

Here are the results of a quick literature search, not very

thorough.

23

Sweeny et al. USENIX VM 2004

Using Hardware Performance Monitors to Understand the

Behavior of Java Applications by Sweeney, Hauswirth,

Cahoon, Cheng, Diwan, Grove, and Hind (USENIX VM

2004).

They found these challenges:

• Distinguish application instructions from VM instructions

• Handling threads

• Capture time-varying behavior of thread

• Handle threads migrating across CPUs

24

Sweeny et al. – continued

• They Modify the Jikes VM to generate thread traces on

AIX.

• They gather per results with Pmapi and the

SPECjbb2000 Benchmarks

• They add native methods to access counters and add

code to save/restore counters on thread switch.

• This has an Overhead of 2%

25

Sweeny et al. – continued

Their results:

• Found IPC improvement over time as optimizer worked

• IPC got worse after garbage collection. Turns out

compacting memory destroys cache.

26

Forst, Eclipsecon 2008

Analyzing Java Performance Using Hardware

Performance Counters by Gary Frost (Eclipsecon 2008).

• hprof takes you to the method but not into the method.

• AMD CodeAnalyst. Uses HW perf counters, integrates

with Eclipse. Allows mapping up with actual lines in

Java code. Unclear exactly how this works (just a slide

deck, not a paper).

27

Schneider and Gross – LCPC2005

Using Platform-Specific Performance Counters for

Dynamic Compilation Schneider and Gross, LCPC2005.

• VM/JIT. Plan to use counters to help optimize JIT.

• Use custom kernel module, Pentium 4

• Table of methods, list of where each byte code starts.

Once get address have to do binary search to find which

byte code it matches.

28

Georges et al. – OOPSLA 2007

Statistically Rigorous Java Performance Evaluation by

Georges, Buytaert, Eeckhout (Oopsla07).

Sources of non-determinism in Java Programs:

• JIT compilation (timer-based sampling might lead to

different JIT invocation times)

• Thread scheduling

• Garbage collection

• System interrupts

29

Georges et al. – continued

• Problem reporting “best” run versus 95% confidence

interval

• They found it changes conclusions.

• Methodology is important

30

Counter Determinism

31

Uses of Counter Determinism

• Validating simulators

• Generating Basic Block Vectors

• Performing Feedback-Directed Optimization

• Hardware Checkpointing/Rollback

• Intrusion Analysis

• Parallel Deterministic Execution (Deterministic Locking)

32

Determinism vs Overcount

• Determinism – same count every time you run

• Overcount – an event counts more than the expected

amount

33

HW Sources of Non-Determinism

• Operating-System interaction

• Program Layout

• Measurement Overhead

• Multi-processor variation

• Hardware Issues

34

SW Sources of Non-Determinism

• Accessing changing values, such as time

• Pointer-value dependencies

35

Problems fount on x86 64

• Hardware Interrupt Interference – extra counts due to

HW interrupts. This includes page faults.

• Instruction Overcounts – some counters are buggy and

count extra

• FP exception/Lazy FP Handling

• Instructions that count uops rather than instructions

36

x86 Deterministic Counters

• Core2: Retired Stores

• Westmere, SNB, IVB: Conditional Branches

37

Mytkowicz et al. ASPLOS 2009

Producing Wrong Data Without Doing Anything Obviously

Wrong. Mytkowicz, Diwan, Hauswirth, Sweeney: ASPLOS

2009.

• Measurement bias

• Simple experiment, seeing if -O3 compiler optimization

is better not straightforward

• Changing environment variable size affects cycle count.

38

• Changing link order can change performance more than

compiler optimization

• It varies by machine and by compiler

39

Counter Accuracy Conclusion

Results are not meant to scare you or say to not use

counters.

Just remember they are not perfect and keep in mind

their limitations as you use them.

40

