
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 18

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

11 November 2014



Project/HW Reminder

• Homework #4 comments

1



Stuff from Last Class

• Phase change RAM.

– chalcogenide glass – used in CD-Rs

– 100ns (compared to 2ns of DRAM) latency

– heating element change from amorphous (high

resistance, 0) to crystaline (low resistance, 1)

– temp sensitive, values lost when soldering to board

(unlike flash)

– better than flash (takes .1ms to write, write whole

blocks at once)

2



– Newer methods might involve lasers and no phase

change?

– Mapping into memory? No need to copy from disk?

– But also, unlike DRAM, a limit on how many times

can be written.

• Memristors

– resistors, relationship between voltage and current

– capacitors, relationship between voltage and charge

– inductors, relationship between current and magnetic

flux

3



– memrister, relationship between charge and magnetic

flux; “remembers” the current that last flowed through

it

– Lot of debate about whether possible. HP working on

memristor based NVRAM

4



Graphics and Video Cards

5



Old CRT Days

• Electron gun

• Horizontal Blank, Vertical Blank

• Atari 2600 – only enough RAM to do one scanline at a

time

• Apple II – video on alternate cycles, refresh RAM for

free

• Bandwidth key issue. SNES / NES, tiles. Double

6



buffering vs only updating during refresh

7



Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay

8



Modern Graphics Cards

• Can draw a lot of power

• 2D (optional these days)

• 3D

• Video decoders

9



Interface

• Integrated or stand alone

• Integrated traditionally less capable, but changing. Share

Memory bandwidth, take memory.

10



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

11



• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

12



Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

13



higher frequency)

14



Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus used in x86

systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150@ and more

Can transfer 8GT/s (giga-transfers) a second

15



In general PCIe is the main limiting factor to getting

data to GPU.

16



Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p

17



or 1920x1200 at 60Hz. TMDS differential signalling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD

18



LCD Displays

• Crystals twist in presence of electric field

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT

19



• Circuitry inside to scale image and other post-processing

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires not

power to hold state

20



Interfaces

• OpenGL – SGI

• DirectX – Microsoft

• For consumer grade, driven by gaming

21



GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

22



Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

23



Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

24



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

25



• highly parallel

26



GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

27



• lot of off-chip memory transfers

28



GPU Performance

• Like stream processors, need parallel. Only can operate

on independent things, but can do many many at

once. Stream processors are records that all need similar

operations done to them. Kernels are the code applied

in each processor. Vertices and fragments have shaders

run on them.

29



Traditional GPU Setup

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shade (Fragment processor) compute color for each

30



pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

31


