
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 19

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

13 November 2014

Announcements

• No class Tuesday

• Assign a homework with two papers to read to do

instead, also feel free to work on your projects

1

HW4 Review

•

2

GPUs

• A lot of this info from the “GPU Gems” book available

from Nvidia

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latench for one

3

GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

4

Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alia Data Predicated Write

5

Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now

6

Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

7

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)

8

Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wite DP4 (dot product)

9

GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?

10

Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fraagment processor can read memory as often

as it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

11

– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilatteral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

12

Kernel

Kernel is like the body of a for loop.

void do_something_1000x1000_grid(float in[1000][1000],float out[1000][1000]) {

int x,y;

for (x = 0; x < 1000; x++) {

for (y = 0; y < 1000; y++) {

// next bit run 1000x1000 times, in parallel

out[x][y] = do_something(in[x][y]);

13

}

}

}

14

Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

15

GPU Tasks

• Map – apply a kernel to each element of an array. For

actual graphics, take each pixel and calculate what it

should look like.

• Reduce – calculate a smaller stream from a larger one.

After enough steps only one is left. For a 2D reduction

(a grid) take 4 and make 1.

• Stream filtering – non-uniform reduction

• Scatter – send results to other processing elements

16

• Gather – gather results from other processing elements

• Sort

• Search – search for an item. Not necessarily faster, but

can be done in parallel

17

Writing code (CUDA)

• Init GPU

• Spcify kernel (in Cg C-like language)

• Load the program

• Set up input/output buffers

• Set the domain and range

• Set up constants

18

• Invoke the kernel

• Read data back from GPU (slow)

19

Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a groupd of thread blocks that need to finish

before next can be started

20

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

21

Power Angle

• Very high performance

• Simpler cores

• No wasted time on wrong-branches, control flow, cache.

22

Other Implementations

• Xeon-Phi – massive array of full x86 cores. Larabee, etc.

23

Measuing Power/Performance

• Many chips have hardware performance counters. Not

easy to get to. perf does not support (though patches

for Intel GPU floating around).

• In general, can do aggregate but not profiling. Start

when data submitted to GPU, only get results when task

finished.

• In CUDA there are counters, PAPI supports them

• Also Nvidia has NVML which can provide some power

24

measurement.

25

