ECE 571 — Advanced

Microprocessor-Based Design
Lecture 4

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

28 January 2016

http://www.eece.maine.edu/~vweaver

Announcements

e Homework #1 was due

e Homework #2 will be posted soon. Probably a paper to
read.

Some sample code

Int 1 ;
int x[128];

for(i=0;i<128;i++) {
} x[i]=0;

mov r0,#0 ; 1=0

loop:
mov rl,x ; point rl to x array
1sl r2,r0,#2 ; r2=1i%*4
mov r3,0 ; want to write 0 to x[i]
str r3,[rl,r2] ; x[1]1=0
add rO0O,r0,#1 ; 1++
cmp r0O,#128 ; 1s 1i==1287
bne loop ; 1f not, keep looping

Simple CPUs

e Ran one instruction at a time.
e Could take one or multiple cycles (IPC 1.0 or less)

e Example — single instruction take 1-5 cycles?

Memory _* Regs ‘Control

IPC Metric

e Instructions per Cycle
e Higher is better

e Inverse of CPI (cycles per instruction)

e 5-stage MIPS pi

Pipelined CPUs

heline

IF

ID

EX MEM

WB

Pipelined CPUs

e |[F = Instruction Fetch, Update PC

~etch 32-bit instruction from L1-cache

e |ID = Decode, Fetch Register

e EX = execute (ALU, maybe shifter, multiplier, divide)
Memory address calculated

e MEM = Memory — if memory had to be accessed,
happens now.

e WWB = register values written back to the register file

IF

mov rO,#0

1D

EX

MEM

WB

Cycle 1

|F mov rl,x
ID | mov rO,#0
EX

MEM

WB

Cycle 2

Cycle 3

|F 1sl r2,r0,#2
1D mov rl,x
EX mov rO,#0
MEM
WB

10

Cycle 4

|F mov r3,#0
ID | 1sl r2,r0,#2
EX mov rl,x
MEM mov rO,#0
WB

11

Cycle 5

IF | str r3, [rl,r2]
1D mov r3,#0
EX 1sl r2,r0,#2
MEM mov rl,x
WB mov rO0,#0

12

Benefits/Downside

e From 2-stage to Pentium 4 31-stage
e Latency higher (5 cycles) but average might be 1 cycle

e Why bother? Can you run the clock faster?

/Y 13

Data Hazards

Happen because instructions might depend on results from
instructions ahead of them in the pipeline that haven't been
written back yet.

e RAW — “true” dependency — problem. Bypassing?

e WAR — “anti” dependency — not a problem if commit in
order

o WAW — “output” dependency — not a problem as long
as ordered

e RAR — not a problem

-y 14

Structural Hazards

e CPU can't just provide. Not enough multipliers for
example

-y 15

Control Hazards

e How quickly can we know outcome of a branch

e Branch prediction? Branch delay slot?

16

Branch Prediction

e Predict (guess) if a branch is taken or not.

e What do we do if guess wrong? (have to have some way
to cancel and start over)

e Modern predictors can be very good, greater than 99%

e Designs are complex and could fill an entire class

-y 17

Memory Delay

e Memory/cache is slow

e Need to bubble / Memory Delay Slot

18

The Memory Wall

e \Wulf and McKee

e Processors getting faster more quickly than memory

e Processors can spend large amounts of time waiting for
memory to be available

e How do we hide this?

-y 19

Caches

e Basic idea is that you have small, faster memories that
are closer to the CPU and much faster

e Data from main memory is cached in these caches

e Data is automatically brought in as needed.
Also can be pre-fetched, either explicitly by program or
by the hardware guessing.

e \What are the downsides of pre-fetching?

e Modern systems often have multiple levels of cache.
Usuall a small (32k or so each) L1 instruction and data,

-y 20

a larger (128k?) shared L2, then L3 and even L4.

e Modern systems also might share caches between
processors, more on that later
e Again, could teach a whole class on caches

/Y 21

Exploiting Parallelism

e How can we take advantage of parallelism in the control
stream?

e Can we execute more than one instruction at a time?

/Y 22

Multi-Issue (Super-Scalar)

e Decode up to X instructions at a time, and if no
dependencies Issue at same time.

e Dual issue example. Can have theoretical IPC of 2.0

e Can have unequal pipelines.

Fetch

Decode

In§ Qj._lege
\ N

EX EX

MEM| MEM

WB | | WB

-y 23

Out-of-Order

e Iries to exploit instruction-level parallelism

e Instead of being stuck waiting for a resource to become
available for an instruction (cache, multiplier, etc) keep
executing Instructions beyond as long as there are no
dependencies

e Need to insure that instrctions commit in order

e What happens on exception? (interrupt, branch
mispredict, etc)

-y o4

e Register Renaming
e Re-order buffer

e Speculative execution / Branch Prediction?

25

Perf Counters related to Stalls

e Front-end stalls — fetch, decode, icache misses

e Back-end stalls — memory accesses

26

Instruction Level Parallelism

e Using super-scalar and/or OoO (Out of Order) execution
try to find parallelism within your serial code

e Chip companies want to speed up existing code. Why?
(it's a pain to change, you might not have source, etc.)

-y 21

Other Ways to get better Parallelism

28

SIMD / Vector Instructions

e x86: MMX/SSE/SSE2/AVX/AVX2
semi-ralted FMA

e MMX (mostly deprecated), @ AMD’'s 3DNow!
(deprecated)

e PowerPC Altivec

e ARM: Neon

/Y 29

SSE / x86

e SSE (streaming SIMD): 128-bit registers XMMO -
XMMY7, can be used as 4 32-bit floats

e SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16
bit int, 16x8-bit int

e SSE3 : minor update, add dsp and others

e SSSE3 (the s is for supplemental): shuffle, horizontal
add

-y 30

e SSE4 : popcnt, dot product

31

AVX / x86

e AVX (advanced vector extensions) — now 256 bits,
YMMO-YMM15 low bits are the XMM registers. Now
twice as many.

Also adds three operand instructions a=b-c

e AVX2 — 3 operand Fused-Multiply Add, more 256
Instructions

e AVX-512 — version used on Xeon Phis (knights landing)
and Skylake — now 512 bits, ZMMO0-XMM31

-y 32

Multi-core

e More's law gives you lots of transistors. Hit limit of how
fast to make a single processor, so why not just put more
on the die?

e Exploits multi-programmed parallelism rather than
instruction-level parallelism

/Y 33

Multi-threaded

e SMT (simultaneous multithreading), Intel Hyperthreading
e Hyrbid of multi-core and multi-pipeline

e Your pipelines might not always be full, especially if
walting on memory

e Why not duplicate fetch/decode logic, and have two
programs execute at once on same set of pipelines.

e If one is idle/stalled, run instructions from other thread

-y 34

e Looks to OS as if you have two cores, but really just one
with two instruction dispatch stages

e Extra logic to make sure that pipelines used fairly, the
results get committed to the right register file, etc.

TODO: draw diagram

-y 35

