ECE 571 – Advanced Microprocessor-Based Design Lecture 5

Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu

2 February 2016

Announcements

- HW#2 was posted
- HW#1 Mostly graded

HW#1 Review

- bzip2 benchmark what does it do?
- 19 billion instructions +/- 400 or so (this is test input maybe?)
- 13 billion cycles +/- 6 million?
- Reversed: similar HW2 will show you why I asked that
- Perf record: 3.5s,

66.48%	bzip2	bzip2
17.45%	bzip2	bzip2
6.42%	bzip2	bzip2
6.12%	bzip2	bzip2
0.70%	bzip2	bzip2

- [.] mainSort
- [.] BZ2_compressBlock
- [.] mainGtU.part.0
- [.] handle_compress.isra.2
- [.] add_pair_to_block

• Valgrind, 1m10.189s == roughly 20 times slower?

11,291,448,187 ???:mainSort [/opt/ece571/401.bzip2/bzip2]
3,381,835,437 ???:BZ2_compressBlock [/opt/ece571/401.bzip2/bzip2]
2,138,813,059 ???:handle_compress.isra.2 [/opt/ece571/401.bzip2/bzip2]
1,958,107,443 ???:mainGtU.part.0 [/opt/ece571/401.bzip2/bzip2]
165,396,105 ???:BZ2_blockSort [/opt/ece571/401.bzip2/bzip2]
140,068,091 ???:add_pair_to_block [/opt/ece571/401.bzip2/bzip2]

Gprof, also 3.5s
 Different results, using function entry instead of exact instruction count for sampling?

time	seconds	seconds	calls	s/call	s/call	name
71.77	2.16	2.16	53	0.04	0.04	mainSort
18.94	2.73	0.57	53	0.01	0.05	BZ2_compressB
6.98	2.94	0.21	12223	0.00	0.00	default_bzall
1.00	2.97	0.03	1272	0.00	0.00	BZ2_hbMakeCode
0.66	2.99	0.02	1856468	0.00	0.00	add_pair_to_b

• Skid instructions – mov is more likely than sub?

perf annotate:

1.14	5f0:	mov	(%r10),%edx
0.56		lea	(%rdx,%r13,1),%eax
0.80		movzbl	(%r15,%rax,1),%eax
3.29		sub	%r9d,%eax

instructions:pp

perf annotate:

0.78	5f0:	mov	(%r10),%edx
0.88		lea	(%rdx,%r13,1),%eax
3.14		movzbl	(%r15,%rax,1),%eax
0.99		sub	%r9d,%eax
0.52		cmp	\$0x0,%eax
0.58		jne 6	589
0.90		movslq	%ebx,%rax

Power and Energy

Definitions and Units

People often say Power when they mean Energy

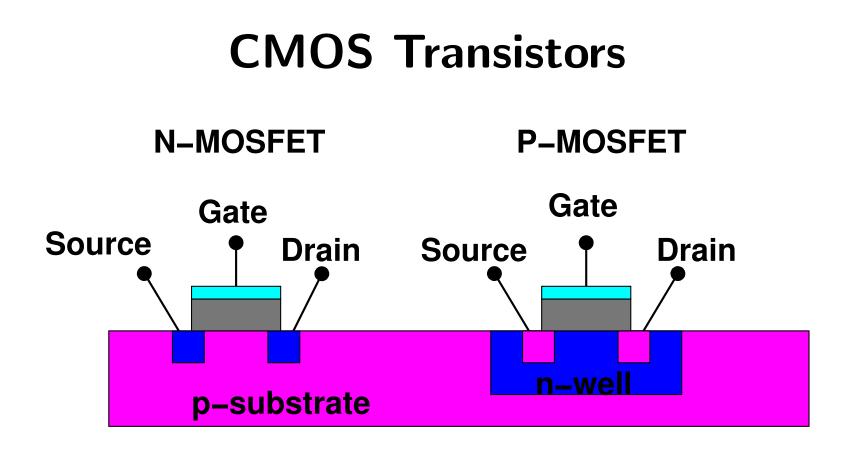
- Energy Joules, kWH (3.6MJ), Therm (105.5MJ), 1 Ton TNT (4.2GJ), eV (1.6×10^{-19} J), BTU (1055 J), horsepower-hour (2.68 MJ), calorie (4.184 J)
- Power Energy/Time Watts (1 J/s), Horsepower (746W), Ton of Refrigeration (12,000 Btu/h)
- \bullet Volt-Amps (for A/C) same units as Watts, but not same thing
- Charge mAh (batteries) need V to convert to Energy

Power and Energy in a Computer System

Power Consumption Breakdown on a Modern Laptop, A. Mahersi and V. Vardhan, PACS'04.

- Old, but hard to find thorough breakdowns like this
- Thinkpad Laptop, 1.3GHz Pentium M, 256M, 14" display
- Oscilloscope with voltage probe and clamp-on current probe.
- Measured V and Current. P=IIR. V=IR P=IV, subtractive for things without wires

- Total System Power 14-30W
 - \circ Hard Drive 0.5-2W (Flash/SSD less)
 - \circ LCD 1W (slightly more black than white)
 - Backlight Inverter (this is before LED) 1-4W depending on brightness
 - \circ CPU 2-15W (with scaling)
 - GPU 1-5W
 - Memory 0.45 1.5W
 - \circ Power Supply Loss 0.65W
 - Wireless 0.1 3W (wifi on cellphones)
 - CDROM 3-5W



 Not in paper but USB 2.0 – 5V, can draw 5 units of 100mA each, 2.5W)

CPU Power and Energy

CMOS Dynamic Power

- $P = C\Delta V V_{dd} \alpha f$ Charging and discharging capacitors big factor $(C\Delta V V_{dd})$ from V_{dd} to ground α is activity factor, transitions per clock cycle F is frequency
- α often approximated as $\frac{1}{2}$, ΔVV_{dd} as V_{dd}^2 leading to $P\approx \frac{1}{2}CV_{dd}^2f$
- Some pass-through loss (V momentarily shorted)

CMOS Dynamic Power Reduction

How can you reduce Dynamic Power?

- Reduce C scaling
- Reduce V_{dd} eventually hit transistor limit
- Reduce α (design level)
- Reduce f makes processor slower

CMOS Static Power

- Leakage Current bigger issue as scaling smaller.
 Forecast at one point to be 20-50% of all chip power before mitigations were taken.
- Various kinds of leakage (Substrate, Gate, etc)
- Linear with Voltage: $P_{static} = I_{leakage}V_{dd}$

Leakage Mitigation

- SOI Silicon on Insulator (AMD, IBM but not Intel)
- High-k dielectric instead of SO2 use some other material for gate oxide (Hafnium)
- Transistor sizing make only the critical transistors fast; non-critical ones can be made slower and less leakage prone
- Body-biasing
- Sleep transistors

Total Energy

- $E_{tot} = [P_{dyanmic} + P_{static}]t$
- $E_{tot} = [(C_{tot}V_{dd}^2\alpha f) + (N_{tot}I_{leakage}V_{dd})]t$

Delay

- $T_d = \frac{C_L V_{dd}}{\mu C_{ox}(\frac{W}{L})(V_{dd} V_t)}$
- Simplifies to $f_{MAX} \sim \frac{(V_{dd} V_t)^2}{V_{dd}}$
- \bullet If you lower f, you can lower V_{dd}

Thermal Issues

- Temperature and Heat Dissipation are closely related to Power
- If thermal issues, need heatsinks, fans, cooling

Metrics to Optimize

- Power
- Energy
- MIPS/W, FLOPS/W (don't handle quadratic V well)
- Energy * Delay
- $Energy * Delay^2$

Power Optimization

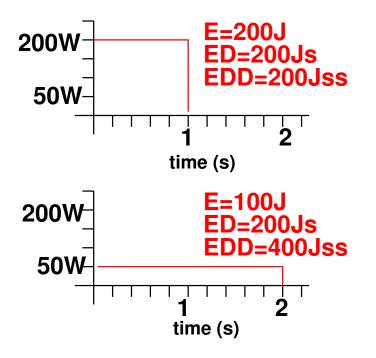
• Does not take into account time. Lowering power does no good if it increases runtime.

Energy Optimization

• Lowering energy can affect time too, as parts can run slower at lower voltages

Energy Delay – Watt/t*t

- Horowitz, Indermaur, Gonzalez (Low Power Electronics, 1994)
- Need to account for delay, so that lowering Energy does not made delay (time) worse
- Voltage Scaling in general scaling low makes transistors slower
- Transistor Sizing reduces Capacitance, also makes transistors slower


- Technology Scaling reduces V and power.
- Transition Reduction better logic design, have fewer transitions

Get rid of clocks? Asynchronous? Clock-gating?

ED Optimization

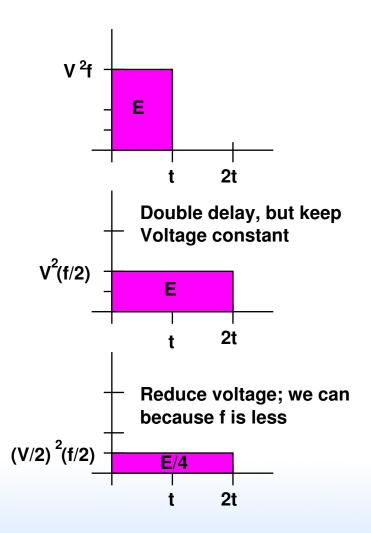
Which is better?

Energy Delay Squared– E*t*t

- Martin, Nyström, Pénzes Power Aware Computing, 2002
- Independent of Voltage in CMOS
- Et can be misleading Ea=2Eb, ta=tB/2 Reduce voltage by half, Ea=Ea/4, ta=2ta, Ea=Eb/2, ta=tb
- Can have arbitrary large number of delay terms in Energy product, squared seems to be good enough

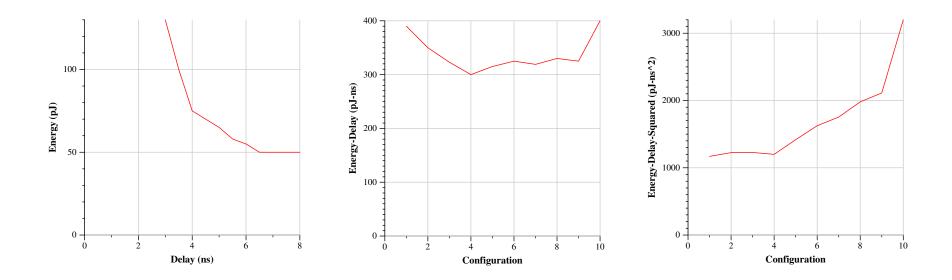
Energy Delay / Energy Delay Squared

Lower is better.


Energy	Delay	ED	ED^2
5 J	2s	10Js	$20Js^2$
5J	3s	15Js	$45Js^2$

Same ED, Different ED^2

Energy	Delay	ED	ED^2
5J	2s	10Js	$20Js^2$
2J	5s	10Js	$50 J s^2$



Energy Example

Energy-Delay Product Redux

Roughly based on data from "Energy-Delay Tradeoffs in CMOS Multipliers" by Brown et al.

Raw Data

Delay	Energy	ED	ED^2
3	130	390	1170
3.5	100	350	1225
3.8	85	323	1227
4	75	300	1200
4.5	70	315	1418
5	65	325	1625
5.5	58	319	1755
6	55	330	1980
6.5	50	390	2535
8	50	400	3200

Other Metrics

- $Energy Delay^n$ choose appropriate factor
- $Energy Delay Area^2$ takes into account cost (die area) [McPAT]
- Power-Delay units of Energy used to measure switching
- Energy Delay Diagram [SWEEP]

