
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 7

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

• HW2 Grades Ready

• HW3 Posted – be careful when cut and pasting with the

backslashes

1

The Branch Problem

• With a pipelined processor, you may have to stall waiting

until branch outcome known before you can correctly

fetch the next instruction

• Conditional branches are common. On average every

5th instruction [cite?]

• What can you do to speed things up?

2

Branch Prediction

• One solution is speculative execution.

Guess which way branch goes.

• Good branch predictors have a 95% or higher hit rate

• Downsides?

If wrong, in-flight thrown out, have to replay.

• Speculation wastes power

3

Branch Predictor Implementations

4

Static Prediction of Conditional Branches

• Backward taken

• Forward not taken

• Can be used as fallback when nothing else is available

5

Common Access Patterns – For Loop
for(i=0;i <100;i++) SOMETHING;

mov r1 ,#0

label:

SOMETHING

add r1 ,r1 ,#1

cmp r1 ,#100

bne label

6

for Branch Behavior

• No branch predictor – 100 stalls

• Other way to avoid problem (branch delay slot on MIPS)

• Static prediction BTFN – 99 times predicted right, 1

time wrong (exit)

• 99% correct predict rate

7

Common Access Patterns – While Loop
x=0; while(x<100) { SOMETHING; x++;}

mov r1 ,#0

label:

cmp r1 ,#100

bge done

SOMETHING

add r1 ,r1 ,#1

b label

done:

8

while Branch Behavior

• No branch predictor – 100 stalls (unless branch delay

slot)

• Static BTFN prediction – 99 times predicted right, 1

time wrong (exit)

• 99% correct predict rate

• Optimizing compiler may translate this to a for loop

(why?)

9

Common Access Patterns – Do/While Loop
x=0; do { SOMETHING; x++;} while(x <100);

mov r1 ,#0

label:

SOMETHING

add r1 ,r1 ,#1

cmp r1 ,#100

blt label

b label

done:

10

while Do/While Behavior

• No branch predictor – 100 stalls (unless branch delay

slot)

• Static BTFN prediction – 99 times predicted right, 1

time wrong (exit)

• 99% correct predict rate

11

Notes

Optimizing compiler will optimize all above to same for

loop (tried it). Why? Because loop unrolling becomes

possible?

12

Common Access Patterns – If/Then
if (x) { FOO } else { BAR}

cmp r1 ,#0

beq else

then:

FOO

b done

else:

BAR

done:

ARM:

cmp r1 ,#0

FOOeq

BARne

13

Common Access Patterns – If/Then
Behavior

• If x is true, static = 100%, if x is false, 0%

• Assuming completely random, average 50% miss rate

• ARM can use conditional execution/predication to avoid

this in simple scenarios

14

How can we Improve Things?

15

Branch Prediction Hints

• Give compiler (or assembler) hints

• likely() (maps to builtin expect())

• unlikely()

• on some processors, (p4) hint for static

• others, just move unlikely blocks out of way for better

L1I$ performance

16

Dynamic Branch Prediction

17

One-bit Branch History Table

• Table, likely indexed by lower bits of instruction

(Why low bits and not high bits?)

• an have more advanced indexing to avoid aliasing

no-tag bits, unlike caches aliasing does not affect correct

program execution

• One-bit indicating what the branch did last time

• Update when a branch miss happens

18

f

3

2

1

0

taken

...

0x1000 0003 : bne PC+45

19

Branch History Table Behavior

• Two misses for each time through loop. Wrong at exit

of loop, then wrong again when restarts. (so actually

worse than static on loops)

• If/Then potentially better than static if long runs of

true/false but can be worse if completely random.

20

Aliasing

• Is it bad? Good?

• Does the O/S need to save on context switch?

• Do you need to save if entering low-power state?

21

Two-bit saturating counter

• Use saturating 2-bit counter

• If 3/2, predict taken, if 1,0 not-taken. Takes two misses

or hits to switch from one extreme to the next, letting

loops take only one mispredict.

• Needs to be updated on every branch, not just for a

mispredict

22

 NT

01

 NT

Weak

10
Weak
Taken

11

Taken

00

Strong

Strong

NT

Taken

Taken

Taken

Taken

NT

NT

NT

23

Local vs Global History

• Can use branch history as index into tables

• Use a shift register to hold history

• Global: history is all branches

• Local: store branch history on a branch by branch basis

24

Global Predictor

Global History

N N T N
2−bit Counters

11

...

Taken

25

Local Predictor

0x8000 0001 : bne PC+45

Not

Taken

... ...

N N T N

00

2−bit Counters

26

Correlating / Two Level Predictors

• Take history into account.

Break branch prediction for a branch out into multiple

locations based on history.

Global History

T

0x1000 0002 : bge PC+45

1

...

N

1

Taken

2 bit saturating counters

27

gshare

• Xors the global history with the address bits to get which

line to use.

• Benefits of 2-level without the extra circuitry

1111

T T TT

2−bit Counters

0x1000 000e : bgt PC+45

Not Taken
XOR

1110

N N

...

Global History

28

Tournament Predictors

• Which to use? Local or global?

• Have both. How to know which one to use? Predict it!

• 2-bit counter remembers which was best.

29

Perceptron

• There are actually Branch Prediction Competitions

• The winner the past few times has been a “Perceptron”

predictor

• Neural Networks

30

Comparing Predictors

• Branch miss rate not enough

• Usually the total number of bits needed is factored in

• May also need to keep track of logic needed if it is

complex.

31

Branch Target Buffer

• Predicts the actual destination of addresses.

• Indexed by whole PC. May be looking up before even

know it is a branch instruction.

• Only need to store predicted-taken branches. (Why?

Because not-taken fall through as per normal).

32

Return Address Stack

• Function calls can confuse BTB. Multiple locations

branching to same spot. Which return address should

be predicted?

• Keep a stack of return addresses for function calls

• Playing games with size optimization and fallthrough/tail

optimization can confuse.

33

Adjusting Predictor on the Fly

Some processors let you configure predictor at runtime.

MIPS R12000 let you

ARM possibly does.

Why is this useful?

In theory if you have a known workload you can pick the

one that works best.

Also if realtime you want something that is deterministic,

like static prediction.

Also Good for simulator validation

34

Cortex A9 Branch Predictor

From the Manual:

• two-level prediction mechanism, comprising: a two-way

BTAC of 512 entries organized as two-way x 256 entries

• a Global History Buffer (GHB) with 4096 2-bit predictors

• a return stack with eight 32-bit entries.

• It is also capable of predicting state changes from ARM

to Thumb, and from Thumb to ARM.

35

Example

Code in perf event validation tests for generic events.

http://web.eece.maine.edu/~vweaver/projects/perf_events/validation/

36

http://web.eece.maine.edu/~vweaver/projects/perf_events/validation/

Example Results

37

Part 1

Testing a loop with 1500000 branches (100 times):

On a simple loop like this, miss rate should be very small.

Adjusting domain to 0,0,0 for ARM

Average number of branch misses: 685

Part 2

Adjusting domain to 0,0,0 for ARM

Testing a function that branches based on a random number

The loop has 7710798 branches.

500000 are random branches; 250699 of those were taken

Adjusting domain to 0,0,0 for ARM

Out of 7710798 branches, 291081 were mispredicted

Assuming a good random number generator and no freaky luck

The mispredicts should be roughly between 125000 and 375000

Testing ‘‘branch-misses’’ generalized event... PASSED

38

Value Prediction

• Can we use this mechanism to help other performance

issues?

What about caches?

• Can we predict values loaded from memory?

• Load Value Prediction. You can, sometimes with

reasonable success, but apparently not worth trouble

as no vendors have ever implemented it.

39

