
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 8

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 February 2016

http://www.eece.maine.edu/~vweaver


Announcements

• HW3 was due

• HW#4 will be posted. About branch predictors

1



Some last branch predictor things

• Can turn off branch prediction on some machines. Most

notably on the ARM1176 chip in a Raspberry Pi.

• People seemed to like the idea of branch predictors,

interesting ideas. Would make a good project. Project

posted after spring break.

• Never too early to think about projects. If you think it

would be fun to play with branch predictor ideas I can

set you up with a branch predictor simulator. If you

2



are interested in power effectiveness of branch predictors

(you can turn off the branch predictor on raspberry pi).

If you think I’m doing a bad job of designing embedded

power measurements and think you can come up with

something better.

3



Performance Concerns – Caches

“Almost all programming can be viewed as an exercise in

caching.” – Terje Mathisen

First Data Cache: IBM System/360 Model 85, 1968

Good survey paper, Ajay Smith, 1982

Computer Architects don’t like to admit it, but no amazing

breakthroughs in years. Mostly incremental changes.

4



What is a cache?

• Small piece of fast memory that is close to the CPU.

• “caches” subsets of main memory

5



Memory Wall

• Processors getting faster (and recently, more cores) and

the memory subsystem cannot keep up.

• Modern processors spend a lot of time waiting for

memory

• “Memory Wall” term coined by Wulf and McKee, 1995

6



Exploits Program Locality

• Temporal – if data is accessed, likely to be accessed

again soon

• Spatial – if data is accessed, likely to access nearby data

Not guaranteed, but true more often than not

7



Memory Hierarchy

There’s never enough memory, so a hierarchy is created of

increasingly slow storage.

• Older: CPU → Memory → Disk → Tape

• Old: CPU → L1 Cache → Memory → Disk

• Now?: CPU → L1/L2/L3 Cache → Memory → SSD

Disk → Network/Cloud

8



UMA and NUMA

CPU CPU CPU CPU

MemMemMem

MemMemMem

UMA NUMA

• UMA – Uniform Memory Access

same speed to access all of memory

• NUMA – Non-Uniform Memory Access

accesses to memory connected to other CPU can take

longer

9



Cache Types

• Instruction (I$) – holds instructions, often read only

(what about self-modifying code?)

can hold extra info (branch prediction hints, instruction

decode boundaries)

• Data (D$) – holds data

• Unified – holds both instruction and data

More flexible than separate

10



Cache Circuitry

• SRAM – flip-flops, not as dense

• DRAM – fewer transistors, but huge capacitors

chips fabbed in DRAM process slower than normal CPU

logic

11



Cache Coherency

• Protocols such as MESI (Modified, Exclusive, Shared,

Invalid)

• Snoopy vs Directory

12



Cache Associativity

• direct-mapped – an address maps to only one cache line

• fully-associative (content-addressable memory, CAM) –

an address can map to any cache line

• set-associative – an address can map to multiple “ways”

• scratchpad – software managed (seen in DSPs and some

CPUs)

13



Cache Terms

• Line – which row of a cache being accessed

• Blocks – size of data chunk stored by a cache

• Tags – used to indicate high bits of address; used to

detect cache hits

• Sets (or ways) – parts of an associative cache

14



Replacement Policy

• FIFO

• LRU

• Round-robin

• Random

• Pseudo-LRU

• Spatial

15



Load Policy

• Critical Word First – when loading a multiple-byte line,

bring in the bytes of interest first

16



Consistency

Need to make sure Memory eventually matches what we

have in cache.

• write-back – keeps track of dirty blocks, only writes back

at eviction time. poor interaction on multi-processor

machines

• write-through – easiest for consistency, potentially more

bandwidth needed, values written that are discarded

• write-allocate – Usually in conjunction with write-back

17



Load cacheline from memory before writing.

18



Inclusiveness

• Inclusive – every item in L1 also in L2

simple, but wastes cache space (multiple copies)

• Exclusive – item cannot be in multiple levels at a time

19



Other Cache Types

• Victim Cache – store last few evicted blocks in case

brought back in again, mitigate smaller associativity

• Assist Cache – prefetch into small cache, avoid problem

where prefetch kicks out good values

• Trace Cache – store predecoded program traces instead

of (or in addition to) instruction cache

20



Virtual vs Physical Addressing

Programs operate on Virtual addresses.

• PIPT, PIVT (Physical Index, Physical/Virt Tagged) –

easiest but requires TLB lookup to translate in critical

path

• VIPT, VIVT (Virtual Index, Physical/Virt Tagged) – No

need for TLB lookup, but can have aliasing between

processes. Can use page coloring, OS support, or ASID

(address space id) to keep things separate

21


