ECE 571 — Advanced

Microprocessor-Based Design
Lecture 9

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

16 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

e HW+#4 Posted, Branch prediction

Notes about HW#3

e Energy
sleep | stream | MMM | iozone
cores | 0.05J|125.8J)|20.17J) | 3.94J
gpu 0J 0J 0J 0J
package | 30.8J | 211J 30 | 31.5J
dram |[6.52J| 254J) | 1.17J | 6.18J
time 10s 9.5s 1.3s | 8.38s
e Power

sleep | stream | MMM | iozone

cores | 0.005W | 13.2W | 15.6W | 0.47W
gpu oW 0J 0J 0J

package | 3.1W | 22.2W | 23.0W | 3.76W

dram 0.65W | 2.67W | 0.9W | 0.74W

time 10s 9.5s 1.3s | 8.33s

What does the various things exercise?
sleep? stream? MMM? iozone?

e It's a i7-4770, 84W TDP, 22nm, 4-core (8 thread)

e equake_l

threads | time E ED | ED2

1 168.5 | 2836 | 476k | SOM
2 137.1 | 3155 | 432k | 59M
4 131.8 | 4174 | 550k | 72M
3 134.2 | 4538 | 608k | 81M

fastest run time? Some have it with 4 vs 8. Think it's 4
cores, 8 threads.

interesting with values so close, some people got 2
instead of 1 on best ED.

e Why doesn't it scale better? Get whole thesis out of it.

-y 4

Would think it would.
How would you find out why it doesn’t scale?

Oh No, More Caches!

Other Cache Types

e Victim Cache — store last few evicted blocks in case
brought back in again, mitigate smaller associativity

e Assist Cache — prefetch into small cache, avoid problem
where prefetch kicks out good values

e Trace Cache — store predecoded program traces instead
of (or in addition to) instruction cache

Virtual vs Physical Addressing

Programs operate on Virtual addresses.

e PIPT, PIVT (Physical Index, Physical/Virt Tagged) —
easiest but requires TLB lookup to translate in critical
path

e VIPT, VIVT (Virtual Index, Physical /Virt Tagged) — No
need for TLB lookup, but can have aliasing between
processes. Can use page coloring, OS support, or ASID
(address space id) to keep things separate

-y 8

Cache Miss Types

e Compulsory (Cold) — miss because first time seen
e Capacity — wouldn't have been a miss with larger cache

e Conflict — miss caused by conflict with another address
(would not have been miss with fully assoc cache)

e Coherence — miss caused by other processor

Fixing Compulsory Misses
Prefetching

e Hardware Prefetchers — very good on modern machines.
Automatically bring in nearby cachelines.

e Software — loading values before needed
also special instructions available

e Large-blocksize of caches. A load brings in all nearby
values in the rest of the block.

Fixing Capacity Misses

e Build Bigger Caches

11

Fixing Conflict Misses

e More Ways in Cache
e Victim Cache

e Code/Variable Alignment, Cache Conscious Data
Placement

/Y 12

Fixing Coherence Misses

e False Sharing — independent values in a cache line being
accessed by multiple cores

-y 13

Cache Example 1 — Finding the Parameters

32kB cache (2'°), direct mapped (2°)
32 Byte linesize (2°), 32-bit address size (23?)

offset = logy(linesize) = 5 bits

lines = logs((cachesize/ways)/linesize) = 1024 lines
(10 bits)

tag = addresssize - (offset bits + line bits) = 17 bits

tag line offset
3130292827 26252423222120101817161514131211109 8 7 6 5 4 3 2 1 0

-y 14

Cache Example 2 — Finding the Parameters

32kB cache (2), 4-way (2?)
32 Byte linesize (2°), 32-bit address size (23?)

offset = logy(linesize) = 5 bits

lines = logs((cachesize/ways)/linesize) = 256 lines (8
bits)

tag = addresssize - (offset bits + line bits) = 19 bits

tag line offset
3130292827 26252423222120101817161514131211109 8 7 6 5 4 3 2 1 0

-y 15

Cache Example

512 Byte cache, 2-Way Set Associative, with 16 byte lines,
LRU replacement.

24-bit tag, 16 lines (4 bits), 4-bit offset.

tag line offset
3130292827 26252423222120101817161514131211109 8 7 6 5 4 3 2 1 0

-y 16

Cache Example 1

17

Cache Example — Instruction 1

1db r1, 0x00000000

Way 0 Way 1

line V D LRU Tag V | D LRU Tag
0 1 0 0 0000 00 0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

b 0 0

C 0 0

d 0 0

e 0 0

f 0 0

Miss, Cold

Cache Example — Instruction 2

1db r1, 0x00000001

Way 0 Way 1

line V D LRU Tag V | D LRU Tag
0 1 0 0 0000 00 0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

b 0 0

C 0 0

d 0 0

e 0 0

f 0 0

Hit

Cache Example — Instruction 3

line

1B~ W N

-~ ® QO O T °

1db r1, 0x00000010

Way 0

Way 1

V D LRU Tag V | D LRU Tag
1 0 0 0000 00 0
1 0 0 0000 00 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Miss, Cold

20

Cache Example — Instruction 4

line

1B~ W N

-~ ® QO O T °

1db r1, 0x80000010

Way 0 Way 1

V D LRU Tag V | D LRU Tag
1 0 0 0000 00 0

1 0 1 0000 00 1 0 0 8000 00
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Miss, Cold

21

Cache Example — Instruction 5

1db r1, 0xCO000010

Way 0 Way 1

line V D LRU Tag V | D LRU Tag
0 1 0 0 0000 00 0

1 1 0 0 C000 00 1 0 1 8000 00
2 0 0

3 0 0

4 0 0

5 0 0

b 0 0

C 0 0

d 0 0

e 0 0

f 0 0

Miss, Cold (never in cache previously)

Cache Example — Instruction 6

line

g~ WON =

-~ DO QO 0O T °

1db r1, 0xCO000002

Way 0 Way 1

V D LRU Tag V | D LRU Tag

1 0 1 0000 00 1 0 0 c000 00
1 0 0 C000 00 1 0 1 8000 00
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Miss, Cold

23

Cache Example — Instruction 7

line

g~ WON =

-~ DO QO 0O T °

1db r1, 0x00000010

Way 0 Way 1

V D LRU Tag V | D LRU Tag

1 0 1 0000 00 1 0 0 c000 00
1 0 1 C000 00 1 0 0 0000 00
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Miss, Conflict

24

Cache Example — Instruction 8

line

g~ WON =

-~ DO QO 0O T °

stb rl1, 0x00000005

Way 0 Way 1

V D LRU Tag V | D LRU Tag

1 1 0 0000 00 1 0 1 c000 00
1 0 1 C000 00 1 0 0 0000 00
0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Hit

25

