ECE 571 — Advanced

Microprocessor-Based Design
Lecture 11

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

23 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

e HW+5 Posted

e If you downloaded very early on, note that |1d-stores
no longer works and | removed that question from the
assignment.

HW#4 Review

1. We are validating the claim that “one in five instructions
is a branch”. This is Haswell.

(a) bzip2: 19.2B instructions, 2.8B branches, 2.5B cond

branches
roughly 15%, so roughly one in seven instructions a

branch
(b) equake_l: 1438B instructions, 123B branches, 91B

cond branches
roughly 8%, so more like one in 12

-y)

Is this expected? fp code often has longer stretches of
codes, big loops, where integer codes traditionally have
lots of small loops and if/else statements.

2. Branch miss rate on Haswell.

(a) bzip2: 2.8B branches, 207M branch misses, 7% miss
rate

(b) equake_l: 120B branches, 587M misses, 0.5% miss
rate

Is this expected? fp code usually has lots of big loops,
integer code smaller loops, if/else.

-y 3

3. Speculative Execution, Haswell

(a) bzip2: 22B uops retired, 30B uops executed = 27%
not retired

(b) equake_l: 1800B uops retired 3200B uops executed =
43% not retired

That's a large number. Not sure why higher for fp,

depends on other architectural things (also could be
bugs in counters?)

4. bzip ratio, ARM64
(a) 20B instructions, 3B predicted, 256M mispredicted

-y 4

16% branches

Why not branches events? ARM Cortex Ab7 not have

full event support until Linux 4.4, wheras NVidia ships
ancient 3.10 kernel.

5. bzip miss rate, ARM64

(a) 8%

Ga) bzip vs equake ratios: fp has fewer branches

(b) bzip branch ratio x86 vs ARM64: about same. Note

total instructions (19B vs 20B, ARM64 is RISC slightly
less dense). Closer than I'd think though

-y 5

(c) equake predict better, loops easier.

(d) arm64 mildly worse at branch prediction? improved
over earlier versions would make interesting project

(e) speculative: equake much worse

(f) 50% miss rate
Code of mine: 500000 are random branches; 250699
of those were taken (50%)

if ((((random()>>2)"(ra
goto label false

rand() is just implemented by a multiply and adc

-y 6

(pseudo rand)
in theory rand() and random() use the same algorithm,
but rand() has branches last time | checked?

Prefetching

Try to avoid cache misses by bringing values into the cache
before they are needed.

Caches with large blocksize already bring in extra data
in advance, but can we do more?

Prefetching Concerns

e \When?
We want to bring in data before we need it, but not too
early or It wastes space in the cache.

e Where? What part of cache? Dedicated buffer?

Limits of Prefetching

e May kick data out of cache that is useful

e Costs energy, especially if we do not use the data

10

Implementation Issues

e Which cache level to bring into? (register, L1, L2)

e Faulting, what happens if invalid address

e Non-cachable areas (MTRR, PAT).
Bad to prefetch mem-mapped registers!

11

Software Prefetching

e ARM has PLD instruction

e PREFE

CHW for write (3dnow, Alpha) cache protocol

e Prefetch, evict next (make it LRU) Alpha

e Prefetch a stream (Altivec)

e Prefetch0, 1, 2 to all cache levels (x86 SSE)
Prefecthnta, non-temporal

12

Hardware Prefetching — icache

e Bring in two cache lines
e Branch predictor can provide hints, targets

e Bring in both targets of a branch

13

Hardware Prefetching — dcache

e Bring in next line — on miss bring in N and N+1 (or
more?)

e Demand — bring in on miss (every other access a miss

with linear access)
Tagged — bring in N+1 on first access to cache line (no

misses with linear access)

Hardware Prefetching — Stride Prefetching

e Stride predictors — like branch predictor, but with load
addresses, keep track of stride

e Separate stream buffer?

-y 15

Stride Predictor

0x10004002: Idb r1,0x0000 0200

last load e stride

= | 0000 0100

+100

Prefetch
/ 0000 0300

16

Hardware Prefetching —
Correlation/Content-Directed Prefetching

e How to handle things like pointer chasing / linked lists?

e Correlation — records sequence of misses, then when
traversing again prefetches in that order

e Content directed — recognize pointers and pre-fetch what
they point to

-y 17

Using 2-bit Counters

e Use 2-bit counter to see if load causing lots of misses, if
so automatically treat as streaming load (Rivers)

e Partitioned cache: cache stack, heap, etc, (or little big
huge) separately (Lee and Tyson)

-y 18

Cortex A9 Prefetch

e PLD — prefetch instruction
has dedicated instruction unit

e Optional hardware prefetcher. (Disabled on pandaboard)

e Can prefetch 8 data streams, detects ascending and
descending with stride of up to 8 cache lines

e Keeps prefetching as long as causing hits

e Stops if: crosses a 4kB page boundary, changes context,

-y 19

a DSB (barrier) or a PLD instruction executes, or the
program does not hit in the prefetched lines.

e PLD requests always take precedence

-y 20

Investigating Prefetching Using Hardware
Performance Counters

-y 21

Quick Look at Core2 HW Prefetch

e Instruction prefetcher
e L1 Data Cache Unit Prefetcher (streaming).

Ascending data accesses prefetch next line

|1 Instruction Pointer Strided Prefetcher.
| ooks for strided access from particular load instructions.
-orward or Backward up to 2k apart

| 2 Data Prefetch Logic.

~etches to L2 based on the L1 DCU

/Y 22

x86 SW Prefetch Instructions (AMD)

e PREFETCHNTA — SSE1, non temporal (use once)

e PREFETCHTO — SSEI1,
e PREFETCHT1 — SSEI1,
e PREFETCHT2 — SSEI1,

yrefetc

refetc

yrefetc

n to all levels
n to L2 + higher

n to L3 + higher

e PREFETCH — AMD 3DNOW! prefetch to L1
e PREFETCHW — AMD 3DNOW! prefetch for write

23

Core?2

e SSE_PRE_EXEC:NTA — counts NTA

e SSE_PRE_EXEC:L1 — counts T0O
(fxsave+2, fxrstor+b)

e SSE_PRE_EXEC:L2 — counts T1/T2

e Problem: Only 2 counters available on Core2

24

AMD (Istanbul and Later)

e PREFETCH_INSTRUCTIONS_DISPATCHED:NTA
e PREFETCH_INSTRUCTIONS_DISPATCHED:LOAD
e PREFETCH_INSTRUCTIONS_DISPATCHED:STORE

e [hese events appear to be speculative, and won't count
SW prefetches that conflict with HW prefetches

-y 25

Atom

e PREFETCH : PREFETCHNTA
e PREFETCH : PREFETCHTO
e PREFETCH: SW_L2

e These events will count SW prefetches, but numbers
counted vary in complex ways

/Y 26

Does anyone use SW Prefetch?

e gcc by default disables SW prefetch unless you specify
—-fprefetch-loop—-arrays

e icc disables unless you specify -xsse4.2 -op-prefetch=4
e glibc has hand-coded SW prefetch in memcpy ()

e Prefetch can hurt behavior:
— Can throw out good cache lines,

— Can bring lines in too soon,
— Can interfere with the HW prefetcher

-y 21

SW Prefetch Distribution

SPEC CPU 2000, Core2, gcc -fprefetch-loop-arrays

Load Distribution mm | 0ads === TO w— T1/T2 m NTA

[e]
o
vy}

2]
o
(o8}

i
o
(o8}

N
o
(o8}

Load Instructions

g «\ «\ IR IR RIS xg & e LIRS B BRIV R WP\ 6 Q S o (¢
Rithetde et ARG et
gw %\% %\&Qﬂ% 9\6 %% o S x,f) fﬂe \\\) B g‘,egq w“\\k o o »g;o 2“&
3 BRL e B
%

Load Distribution Loads TO T1/T2 NTA

150B

100B

(&)

o

©
!

Load Instructions

28

Normalized SW Prefetch Runtime

on Core2 (Smaller is Better)

Integer SPEC CPU 2000 Normalized Runtime when SW Prefetch Enabled with -fprefetch-loop-arrays

14

0.5

Normalized Runtime

<
2

) R SRS P12 B SR AN B (P 6 20+ 'L N
'& "’@ 00\‘\ \}?\«\e\ S &2 f;)\’{\“\:e ge 6”‘(3 \\‘?‘ qox\e (&0 ‘ % '9“0

Q, € & N \e
‘@,QQ\Q‘OQ 60 (ao o \,‘6 20 e;f@ (& $ (S\ (\ R \0“\\@(\ “\\v“\ 5
M2 50 <\‘ AN A ‘;1@6\ »p‘)»p‘o»p 2"1\?

'L

&Q% S 9@% @ﬂ%“&’\%& % % <z°° o’\"’%c ")

%
v (2"7, % %’rb'f’%’f"bQQQ
'L

"L6

FP SPEC CPU 2000 Normalized Runtime when SW Prefetch Enabled with -fprefetch-loop-arrays

Normalized Runtime

The HW Prefetcher on Core2 can be
Disabled

30

Runtime with HW Prefetcher Disabled

Normalized against Runtime with HW Prefetcher Enabled
on Core2 (Smaller is Better)

Normalized Runtime when HW Prefetch Disabled = plain o W/1§‘}N Prefetch

Normalized Runtime

We\e&e 0’@ & 100 w@ga‘ %x«\ da%x% o PN Ve 6%"10“ O o gf«\\ﬁ,, 2«
QO" YOAD ,\/ % L0 eo“ WS RO e(\“ \‘3‘“\0‘(\ 2

('&Q 1,? oQ ‘3
\‘\ ‘0“\ 6 6
e S Q&g \“‘“9 T
’L
’L

o5 %mgww

'L‘:)

Normalized Runtime when HW Prefetch Disabled == plain == W/ SW Prefetch
247 258 3.82 .66

=
o

Normalized Runtime
[5=Y
1

0.5
0 A 1 O g c Q o Q N 1
A A A o o o of
. < ‘(\? \é? \\)? er,@ e\? ,\:\9 D:\Q A oC o < %é 0\‘“? 6\?
Wl A 29 = & o e o\ NG Sty
O I A X PRI N PN N P @ X

-y 31

PAPT_PRF_SW Reuvisited

e Can multiple machines count SW Prefetches?
Yes.

e Does the behavior of the events match expectations?
Not always.

e Would people use the preset?
Maybe.

32

L1 Data Cache Accesses

float array[1000],sum = 0.0;
PAPI_start_counters(events,1);

for(int i=0; i<1000; i++) {
sum += arrayl[il];

PAPI_stop_counters(counts,1);

33

PAPI_L1_DCA

L1 DCache Accesses normalized against 1000

Na Counter Available

2,
O

Normalized Accesses
OFRPNWPMOOIO
|

A
%
%
0
&

34

Expected Code

* 4020d8:
4020dc:
4020e0:
4020e3:

£f3 Of
48 83
48 39
75 £3

Unexpected Code

* 401e18:
* 401ele:
401e23:
401e27:
* 401e2d:
401e33:

£3 Of
£f3 Of
48 83
48 3d
£3 Of
75 e3

PAPI_L1_DCA

58
cO
do

10
58
cO
e8
11

00
04

44
04
01
03
44

24 Oc
82

00 00
24 Oc

addss
add
cmp
jne

movss
addss
add
cmp
movss
jne

(Y%rax) , %xmmO
$0x4,%rax

%rdx,frax

4020d8 <main+0x328>

Oxc (%rsp) , %pxmmO
(%rdx,%rax,4) ,%xmmO
$0x1,%rax

$0x3e8, Yrax
%xmmO0 , Oxc (%rsp)
401e18 <main+0x398>

35

L1 Data Cache Misses

e Allocate array as big as L1 DCache
e Walk through the array byte-by-byte
e Count misses with PAPI_L1_DCM event

o If 32B line size, if linear walk through memory, first
time will have 1/32 miss rate or 3.125%. Second time
through (if fit in cache) should be 0%.

-y 36

PAPI_L1_DCM -
Forward /Reverse/Random

37

a|ge|leny Jaunod oN x

1 _ _ _
o Lo o Lo
o N~ W]

1.25
0.00-

) (q\
— o o o
SOSSI|\ PazIfeWwIoN

38

L1D Sources of Divergences

e Hardware Prefetching
e PAPI| Measurement Noise
e Operating System Activity

e Non-LRU Cache Replacement

39

L2 Total Cache Misses

e Allocate array as big as L2 Cache
e Walk through the array byte-by-byte

e Count misses with PAPI_L2_TCM event

40

PAPI_L2_TCM - Forward/Reverse/Random

1.75-
o
0 1,50+
V)
'5 125
_. 1.00 2
g
2075 <
(]
cU i =
E 0.50 §
CZD 0.254 2
0.00- o ——— < ——
3\ Q, 9 Q \QJ
<
&

-y 41

L2 Sources of Divergences

e Hardware Prefetching

e PAPI| Measurement Noise

e Operating System Activity

e Non-LRU Cache Replacement

e Cache Coherency Traffic

42

