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Announcements

• Notes on campus closing

• HW6 posted

• HW4 redux – branch prediction with random on haswell

It turns out that it can’t predict random

It just turns out there were so many other branches

going on that our results lost in noise.
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Project

• Document posted to the website.

• Topic selection not required until end of March, but

posting it in case anyone wants to get an early start.
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HW#5 Review

1. Cache Paramaters: 44-bit, 32kB, 8-way (haswell), 64-

Byte

(a) Offset = log264 = 6bits

(b) Lines =
215

23

26
= 26 = 6bits

(c) Tag = 44 bits - 6 bits - 6 bits = 32 bits

(d) Note: the offset+lines = 12 is probably not a

coincidence, as we’ll learn about with Virtual Memory.

212 = 4096 which is a typical page size, which makes

PIVT caches much easier
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2. Cache Example

(a) ld 0000 080f = line 0, tag 8 = hit

(b) ld ffff ffff = line f, tag ffffff = miss (cold)

(c) ld 0000 0810 = line 1 tag 8 = miss (unknown type),

and LRU says we throw out tag a, which is dirty, so

writeback

3. Bzip2 on Haswell

(a) L1-icache = 13k/19B = 0% miss rate

(b) L1-dcache = 311M/6.2B = 5% miss rate

(c) L2 (didn’t ask for this) 208M/411M = 50% miss rate

4



(d) LLC 601k/139M = 0.4% miss rate

(e) Note, l1-dcache is loads. Issue with l1d-stores, in Linux

4.1 (17 Feb 2015) Kleen posted patch to separate SNB

evens from HSW in Linux kernel. So your results will

change based on kernel version. Annoying. Before

there was a l1d-store events

(f) Why do the results not match up? Shouldn’t L1-

misses be same as L2-accceses? Why would they not

match up? Bug in counters, bug in counter selection,

other things going on in system, shared resources, chip

errata, prefetching, etc. LLC actually uses offcore-
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response events

(g) What can we tell about bzip2 behavior? Fits well in

icache. Why is L2 so bad?

4. equake l on Haswell

(a) L1-icache = 14M/1.4T = 0%

(b) L1-dcache = 31B/526B = 5.8%

(c) L2 = 22B/52B = 42%

(d) LLC = 8B/13B=58%

5. bzip2 on Jetson

(a) L1-icache = 184k/10B = 0%
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(b) L1-dcache-load = 254M/6B = 4%

(c) L1-dcache-store = 56M/2.2B = 2.5%

(d) L2-dcache-load = 28M/330M = 8.5%

(e) L2-dcache-store = 21M/308M = 6.8%

6. Analysis

(a) Bzip2: haswell vs Jetson

HSW: 32kBx8x64B L1, L2=256B, L3=8MB

Jetson: 32kb L1D, 48kBL1I, L2=2MB

l1-dcache-load actually slightly better jetson?

(b) Bzip2 vs equake
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Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection
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Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...
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Page Table

• Collection of Page Table Entries (PTE)

• Some common components: ID of owner, Virtual Page

Number, valid bit, location of page (memory, disk, etc),

protection info (read only, etc), page is dirty, age (how

recent updated, for LRU)
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Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.
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Hierarchical Page Table Diagram
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Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

14



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.
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Inverted Page Table Diagram
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Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?
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TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping
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and TLB invalidated on all other processors
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Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out.

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux
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What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked
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• It no physical mapping in page table, then page fault

happens
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What happens on a page fault

• Walk the page table and see if the page is valid and

there

• ”minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• ”major” – page needs to be created or brought in from

disk. Demand paging.

Needs to find room in physical memory. If no free space

23



available, needs to kick something out. Disk-backed

(and not dirty) just discarded. Disk-backed and dirty,

written back. Memory can be paged to disk. Eventually

can OOM. Memory is then loaded, or zeroed, and PTE

updated. Can it be shared? (zero page)

• ”invalid” – segfault
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What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write
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