
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 20

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 April 2016

http://www.eece.maine.edu/~vweaver


Project/HW Reminder

• Homework #9 was posted

1



Raspberry Pi Cache Hierarchy Digression

Raspberry Pi A+/B BCM2835 700MHz LPDDR2 RAM

1MBx16 memset()

2



Hardware Software cycles time MB/s
No Cache C 1-byte 936754552 1.338s 12.0 MB/s
L1-I$ C 1-byte 355098645 0.507s 31.5 MB/s
L1-I$+brpred C 1-byte 271038891 0.387s 41.3 MB/s
L1-I$+brpred+D$ C 1-byte 116346597 0.166s 96.3 MB/s
No Cache C 4-byte 205749402 0.294s 54.4 MB/s
L1-I$ C 4-byte 67745267 0.097s 165 MB/s
L1-I$+brpred C 4-byte 63533353 0.091s 176 MB/s
L1-I$+brpred+D$ C 4-byte 28633484 0.041s 391 MB/s
No Cache ASM 64B 23437080 0.0335s 478 MB/s
L1-I$ ASM 64B 17749501 0.0253s 631 MB/s
L1-I$+brpred ASM 64B 18006681 0.0257s 622 MB/s
L1-I$+brpred+D$ ASM 64B 8829849 0.0126s 1268 MB/s

Theoretical Maximum speed of LPDDR2@400MHZ = 8GB/s
Linux glibc memset() maxes out around 1400 MB/s

3



Interesting issue

• Sometimes the byte-by-byte gets 7MB/s, sometimes

11MB/s. Not cache (turned off). Not branch predictor

(turned off).

• Is based on memory offset, if you add printk to debug,

can start or stop

• Careful poking around and adding nops revealed if

the inner store loop crosses a 64-byte boundary (i.e.

branched from 0x44 to 0x3c) performance dropped off

4



by 40%.

• Why the cause? No icache so the loop must be crossing

some 64-byte barrier

• In LPDDR2 a 64-byte (512 bit) rowsize is common. So

maybe we are directly seeing the impact of not having

code stay in the same open row.

5



Linux memset performance

2 8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M

size (B)

0

50
0

10
00

15
00

M
B

/s

Linux memset() performance on pi-bplus

6



Graphics and Video Cards

7



Old CRT Days

• Electron gun

• Horizontal Blank, Vertical Blank

• Atari 2600 – only enough RAM to do one scanline at a

time

• Apple II – video on alternate cycles, refresh RAM for

free

• Bandwidth key issue. SNES / NES, tiles. Double

buffering vs only updating during refresh

8



Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay

9



Modern Graphics Cards

• Can draw a lot of power

• 2D (optional these days)

• 3D

• Video decoders

10



Interface

• Integrated or stand alone

• Integrated traditionally less capable, but changing. Share

Memory bandwidth, take memory.

11



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

12



Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

higher frequency)

13



Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus in x86 systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150W and more

Can transfer 8GT/s (giga-transfers) a second

In general PCIe is limiting factor to getting data to GPU.

14



Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p

15



or 1920x1200 at 60Hz. TMDS differential signalling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD

16



LCD Displays

• Crystals twist in presence of electric field

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT

17



• Circuitry inside to scale image and other post-processing

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires not

power to hold state

18



Interfaces

• OpenGL – SGI

• DirectX – Microsoft

• For consumer grade, driven by gaming

19



GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

20



Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

21



Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

22



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

23



GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers

24



GPU Performance

• Like stream processors, need parallel. Only can operate

on independent things, but can do many many at

once. Stream processors are records that all need similar

operations done to them. Kernels are the code applied

in each processor. Vertices and fragments have shaders

run on them.

25



Traditional GPU Setup

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shade (Fragment processor) compute color for each

26



pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

27


