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Annoncements

• Project – don’t put it off until the last minute!

• Need at least one more group willing to present on

Tuesday.

• Midterm canceled?

• Not a homework, but please read the paper on mobile

power measurement for next class.
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When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)
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Non-CPU power saving

• RAM

• GPU

• Ethernet / Wireless

• Disk

• PCI

• USB
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DRAM

• Could teach a whole class on DRAM

• Tightly coupled to performance due to memory wall

• Commodity and churned out. Usually not interested in

making changes to the underlying setup, usually just the

interface or memory controller

• Memory controllers have migrated to the CPUs making

that hard to change too
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DRAM – Mobile DRAM

• From Micron: “TN-46-12: Mobile DRAM Power-Saving

Features”, 2009

• Temperature-Compensated Self Refresh (TCSR) – Auto

adjust refresh timings based on temperature

• Partial Array Self Refresh (PASR) – only refresh parts of

RAM that have data in them

• Deep Power Down (DPD) – enable turning off the

voltage generators when maintaining DRAM not needed
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• Has equations for estimating power usage
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DRAM – Elsewhere

• Tom’s Hardware. 2010. “How Much Power Does Low-

Voltage DDR3 Memory Really Save?” Using low-voltage

(1.25 or 1.35 rather than 1.5) DDR3 DRAM can reduce

power by 0.5-1W. Slower performance settings, but not

really noticeable.

• Linus Torvalds Rant from 2007: DRAM Energy not a

prime concern. Just don’t use FBDIMMs if you want

low-power.
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DRAM – Recent Academic

• “Rethinking DRAM Power Modes for Energy

Proportionality”, Malladi et al, Micro 2012.

– DRAM spends lots of time idle, but latency is so high

for wakeup it cannot utilize powerdown modes

– Reference 25% of data-center energy usage is DRAM?

– Use LPDDR2 trades bandwidth for efficiency

– Current modes involve turning off DLLs (Delay-locked

loops?) which are slow to turn on again, 700ns+

– some background on DRAM operation
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– Low-power mode sounds good, but then it takes 512

memory cycles of power to re-start (a lot of energy)

– Propose MemBLAZE. Moves clock generation out

of DIMM and into memory controller, allowing fast

wakeup

• “Towards Energy-Proportional Datacenter Memory with

Mobile DRAM”, Malladi et al, ISCA 2012.

– Look at using LPDDR2 in servers rather than DDR3.

– DDR3 often in “Active-idle” as many workloads do not

allow sleep.
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• “A Predictor-based Power-Saving Policy for DRAM

Memories”, Thomas et al, EuroMicro 2012.

– Use a history based predictor to pick when to

powerdown.

– Say up to 20% of mobile devices and 25% of data

center is DRAM

• “Rethinking DRAM Design and Organization for Energy-

Constrained Multi-Cores”, Udipi et al., ISCA 2010

– DRAMs “overfetch” which hurts energy

• “A Comprehensive Approach to DRAM Power
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Management”, Hur and Lin, HPCA2008.

– Throttling and Power Shifting – slowing down to fit in

power budget

– Put DRAMs in low power mode – available

commercially but no one seems to use this yet

– Simulate for Power5 and DDR2-533

– Modify the memory controller
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GPU power saving

• From Intel lesswatts.org

◦ Framebuffer Compression

◦ Backlight Control

◦ Minimized Vertical Blank Interrupts

◦ Auto Display Brightness

• from LWN: http://lwn.net/Articles/318727/

◦ Clock gating or reclocking

◦ Fewer memory accesses: compression.

Simpler background image, lower power
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◦ Moving mouse: 15W. Blinking cursor: 2W

◦ Powering off unneeded output port, 0.5W

◦ LVDS (low-voltage digital signaling) interface, lower

refresh rate, 0.5W (start getting artifacts)
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Ethernet

• PHY (transmitter) can take several watts

• WOL can draw power when system is turned off

• Gigabit draw 2W-4W more than 100Megabit 10 Gigabit

10-20W more than 100Megabit

• Takes up to 2 seconds to re-negotiate speeds

• Green Ethernet IEEE 802.3az
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WLAN

• power-save poll – go to sleep, have server queue up

packets. latency

• Auto association – how aggressively it searches for access

points

• RFKill switch

• Unnecessary Bluetooth
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Disks

• SATA Aggressive Link Power Management – shuts down

when no I/O for a while, save up to 1.5W

• Filesystem atime

• Disk power management (spin down) (lifetime of drive)

• VM writeback – less power if queue up, but power failure

potentially worse

16



Soundcards

• Low-power mode
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USB

• autosuspend. Can sometimes cause issues

• off by default as some USB you disable don’t come back
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Virtualization

Different levels of abstraction.

• Simulation

• Full-virtualization

• Paravirtualization

• Containers
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Terms

• Guest

• Host

• VM (virtual machine)

• Hypervisor
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Are you running on real hardware?

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• SMM mode (system maintanence mode)
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Simulation

• Simulation
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Full Virtualization

• Virtualize the CPU, some sort of simulation of hardware

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware
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KVM

• Requires CPU with hardware virtualization extensions

• Kernel acts as hypervisor
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Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): the VM must control all

resources
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• efficiency (performance): most instructions must execute

without intervention
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Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V A Comparison of Software and

Hardware Techniques for x86 Virtualization by Adams

and Agesen, ASPLOS 2006. VMware managed full virt

on 32-bit x86 using dynamic binary instrumentation and

segmentation.

– De-privledging: any attempt to read privledged info
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traps and can be intercepted

– Shadow structures: need copies of things that can’t

be intercepted at CPU level, like page-tables. Need to

trap on access to these. True vs hidden page faults.

– x86 issues (assume protected mode) visible privledged

state (see privlede mode when read CS register; CPL

(privlede level) lower 2 bits) Lack of traps when

privledged instructions run at user-level. popf (pop

flags) changes both ALU and system flags (IF, enable

interrupts). When run non-privledged ignores this,

doesn’t trap.
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– Intel VT-x and AMD-V Adds virtual machine code

block Intel: extended page tables (nested page tables)

VMCS shadowing: allow nested VMs
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Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces
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Containers

• ;Login article

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM
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Traditional HPC

AB

↓

↓
C
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Cloud-based HPC

AB

↓

↓
C
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Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC
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Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments

�o1 Time Loses All Meaning¤O1
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Simplified Model of Time Measurement

Hardware

Operating System

Application

Time
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Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer
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Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1

38



So What Can We Do?

Hope we have exclusive access and measure wall-clock time.
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Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup
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Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?
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Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.
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Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)

43



PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters

44



Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports
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The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest
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PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);
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Timing Behavior on Bare Metal
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Timing Behavior on Virtualized System
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Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component
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Timing Adjusted with Stealtime
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Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component
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Infiniband DirectPath Comparison
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VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime
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Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway
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