
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 24

Vince Weaver

http://web.eece.maine.edu/ vweaver

vincent.weaver@maine.edu

26 April 2016



Annoncements

• Project – don’t put it off until the last minute!

• Need at least one more group willing to present on

Tuesday.

• Midterm canceled?

• Not a homework, but please read the paper on mobile

power measurement for next class.

1



When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)

2



Non-CPU power saving

• RAM

• GPU

• Ethernet / Wireless

• Disk

• PCI

• USB

3



DRAM

• Could teach a whole class on DRAM

• Tightly coupled to performance due to memory wall

• Commodity and churned out. Usually not interested in

making changes to the underlying setup, usually just the

interface or memory controller

• Memory controllers have migrated to the CPUs making

that hard to change too

4



DRAM – Mobile DRAM

• From Micron: “TN-46-12: Mobile DRAM Power-Saving

Features”, 2009

• Temperature-Compensated Self Refresh (TCSR) – Auto

adjust refresh timings based on temperature

• Partial Array Self Refresh (PASR) – only refresh parts of

RAM that have data in them

• Deep Power Down (DPD) – enable turning off the

voltage generators when maintaining DRAM not needed

5



• Has equations for estimating power usage

6



DRAM – Elsewhere

• Tom’s Hardware. 2010. “How Much Power Does Low-

Voltage DDR3 Memory Really Save?” Using low-voltage

(1.25 or 1.35 rather than 1.5) DDR3 DRAM can reduce

power by 0.5-1W. Slower performance settings, but not

really noticeable.

• Linus Torvalds Rant from 2007: DRAM Energy not a

prime concern. Just don’t use FBDIMMs if you want

low-power.

7



DRAM – Recent Academic

• “Rethinking DRAM Power Modes for Energy

Proportionality”, Malladi et al, Micro 2012.

– DRAM spends lots of time idle, but latency is so high

for wakeup it cannot utilize powerdown modes

– Reference 25% of data-center energy usage is DRAM?

– Use LPDDR2 trades bandwidth for efficiency

– Current modes involve turning off DLLs (Delay-locked

loops?) which are slow to turn on again, 700ns+

– some background on DRAM operation

8



– Low-power mode sounds good, but then it takes 512

memory cycles of power to re-start (a lot of energy)

– Propose MemBLAZE. Moves clock generation out

of DIMM and into memory controller, allowing fast

wakeup

• “Towards Energy-Proportional Datacenter Memory with

Mobile DRAM”, Malladi et al, ISCA 2012.

– Look at using LPDDR2 in servers rather than DDR3.

– DDR3 often in “Active-idle” as many workloads do not

allow sleep.

9



• “A Predictor-based Power-Saving Policy for DRAM

Memories”, Thomas et al, EuroMicro 2012.

– Use a history based predictor to pick when to

powerdown.

– Say up to 20% of mobile devices and 25% of data

center is DRAM

• “Rethinking DRAM Design and Organization for Energy-

Constrained Multi-Cores”, Udipi et al., ISCA 2010

– DRAMs “overfetch” which hurts energy

• “A Comprehensive Approach to DRAM Power

10



Management”, Hur and Lin, HPCA2008.

– Throttling and Power Shifting – slowing down to fit in

power budget

– Put DRAMs in low power mode – available

commercially but no one seems to use this yet

– Simulate for Power5 and DDR2-533

– Modify the memory controller

11



GPU power saving

• From Intel lesswatts.org

◦ Framebuffer Compression

◦ Backlight Control

◦ Minimized Vertical Blank Interrupts

◦ Auto Display Brightness

• from LWN: http://lwn.net/Articles/318727/

◦ Clock gating or reclocking

◦ Fewer memory accesses: compression.

Simpler background image, lower power

12



◦ Moving mouse: 15W. Blinking cursor: 2W

◦ Powering off unneeded output port, 0.5W

◦ LVDS (low-voltage digital signaling) interface, lower

refresh rate, 0.5W (start getting artifacts)

13



Ethernet

• PHY (transmitter) can take several watts

• WOL can draw power when system is turned off

• Gigabit draw 2W-4W more than 100Megabit 10 Gigabit

10-20W more than 100Megabit

• Takes up to 2 seconds to re-negotiate speeds

• Green Ethernet IEEE 802.3az

14



WLAN

• power-save poll – go to sleep, have server queue up

packets. latency

• Auto association – how aggressively it searches for access

points

• RFKill switch

• Unnecessary Bluetooth

15



Disks

• SATA Aggressive Link Power Management – shuts down

when no I/O for a while, save up to 1.5W

• Filesystem atime

• Disk power management (spin down) (lifetime of drive)

• VM writeback – less power if queue up, but power failure

potentially worse

16



Soundcards

• Low-power mode

17



USB

• autosuspend. Can sometimes cause issues

• off by default as some USB you disable don’t come back

18



Virtualization

Different levels of abstraction.

• Simulation

• Full-virtualization

• Paravirtualization

• Containers

19



Terms

• Guest

• Host

• VM (virtual machine)

• Hypervisor

20



Are you running on real hardware?

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• SMM mode (system maintanence mode)

21



Simulation

• Simulation

22



Full Virtualization

• Virtualize the CPU, some sort of simulation of hardware

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware

23



KVM

• Requires CPU with hardware virtualization extensions

• Kernel acts as hypervisor

24



Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): the VM must control all

resources

25



• efficiency (performance): most instructions must execute

without intervention

26



Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V A Comparison of Software and

Hardware Techniques for x86 Virtualization by Adams

and Agesen, ASPLOS 2006. VMware managed full virt

on 32-bit x86 using dynamic binary instrumentation and

segmentation.

– De-privledging: any attempt to read privledged info

27



traps and can be intercepted

– Shadow structures: need copies of things that can’t

be intercepted at CPU level, like page-tables. Need to

trap on access to these. True vs hidden page faults.

– x86 issues (assume protected mode) visible privledged

state (see privlede mode when read CS register; CPL

(privlede level) lower 2 bits) Lack of traps when

privledged instructions run at user-level. popf (pop

flags) changes both ALU and system flags (IF, enable

interrupts). When run non-privledged ignores this,

doesn’t trap.

28



– Intel VT-x and AMD-V Adds virtual machine code

block Intel: extended page tables (nested page tables)

VMCS shadowing: allow nested VMs

29



Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces

30



Containers

• ;Login article

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM

31



Traditional HPC

AB

↓

↓
C

32



Cloud-based HPC

AB

↓

↓
C

33



Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC

34



Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments

�o1 Time Loses All Meaning¤O1

35



Simplified Model of Time Measurement

Hardware

Operating System

Application

Time

36



Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer

37



Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1

38



So What Can We Do?

Hope we have exclusive access and measure wall-clock time.

39



Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup

40



Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?

41



Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.

42



Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)

43



PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters

44



Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports

45



The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest

46



PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);

47



Timing Behavior on Bare Metal

0 2 4 6 8 10
Other CPU-hogging Apps Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Actual Core2 Hardware

PAPI_get_real_usec()

PAPI_get_virt_usec()

48



Timing Behavior on Virtualized System

0 2 4 6 8 10
Other CPU-hogging VMs Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Same Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

49



Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component

50



Timing Adjusted with Stealtime

0 2 4 6 8 10
Other CPU-hogging jobs Running

0

50000

100000

T
im

e
 (

u
s
)

Time to run MMM, Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

System Stealtime

PAPI_get_virt_usec() adjusted for stealtime

51



Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component

52



Infiniband DirectPath Comparison

53



VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime

54



Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway

55


