
ECE571: Advanced Microprocessor Design – Final Project
Spring 2016

Officially Due: Friday, 6 May 2016 (Last day of Classes)

Overview:
• Design a project that explores the power and/or energy performance of a modern microprocessor

design. This is very open-ended, but some guidelines are below.

Guidelines:
• You may work either alone or in groups of two. If you work in a group your end project will have

higher expectations.

• You may use any system you like for this project. It can be one of the systems used in class (Haswell
or Jetson), a personal system you have access to, or I can set up accounts on some of my other server
or embedded boards.

• Feel free to use more exotic systems or operating systems. It does not have to be x86/ARM, nor does
it have to run Linux.

Part 1: Topic Selection (due 29 March 2016) (5pts)

Each group should send a brief e-mail describing your project topic and listing group members.

Part 2: Related work / Progress Report (due 19 April 2016) (10pts)

Give a brief status report on your project. Re-iterate the topic, how preparations are going, whether you
have access to all the hardware you need, and any other status you might have. If things are not going well,
there is still time to modify the topic.

Also provide some “related work” for your project. Do a literature search and find examples of other
people who have done similar research. It is OK if you find a lot of related work, or even if someone has
done the exact same thing before. This is a class project (not a PhD thesis) so reproducing something that
has been done before is perfectly fine.

A quick way of finding related work is using Google, but don’t limit yourself to papers turned up that
way. Sometimes you might find an interesting paper via Google, but you will not be able to find a free copy
online (just a site asking you to pay money). If it’s a journal like the IEEE or ACM you can still get copies
of the articles for free. If you’re on an on-campus internet connection (ending in .maine.edu) you can go to
the UMaine library homepage, search for IEEE or ACM there, and it will give you a link to click through to
get to those sites (IEEE explore or similar) and you will then be able to find and download those papers for
free.

I’d prefer if the references you find are books or academic papers, but if you find a few good blog or
website references that’s probably OK.

What I would like to receive:

• A file containing the status update, as well as a few paragraphs about the related work. If you are
working alone, I’d like to see at least 5. If you are working as a group, I’d like to see at least 8. (More
is fine).



• A list of references with the work cited.

• Indicate if you are willing to present Tuesday instead of Thursday (there will be a small bonus for
going early).

• You can submit the status update by e-mail. Only one submission is needed per group.

An short example of roughly what I expect:

Our project is a low-powered video game. We have some of the code working and we’ve obtained a
Raspberry Pi. We’ll need to borrow a WattsUpPro to conduct power measurements.

We are willing to present on Tuesday.

Related Work:

Our research involves making an open-source low-powered video game that will run on an embedded
Raspberry Pi board. Weaver[1] wrote a cross-platform assembly language game for the ARM platform
but unlike us he did not characterize the power consumption while running. Mallow and Snap[2] look at
optimizing a Ray-Tracing program on the Tegra2 ARM system. This is similar to our project, only they
looked solely at ray-tracing applications and not video games.

[1] V. Weaver. "Tom Bombem: An ARM Implementation of the Classic DOS game." Proc. of the 4th
Conference on Useless Video Games, p 10-18, May 1996.

[2] M. Mallow and G. Snap. "Optimizing Energy Consumption on the Tegra2." Journal of Embedded Pro-
gramming, p11-19, Vol 1 Issue 15, June 2010.

Part 3: In-class Presentations , 3-5 May 2016 (40pts)

• You will have 10 minutes to present. Plan for 8 minutes describing your project and allowing 2 minutes
for questions.

• Give a summary of what you did and why. Show any results you obtained. Describe any future work
that needs to be done.

• You may present slides using the projector if you want, but that’s not strictly necessary.

• I’m still working out how remote/on-line students will present.

Part 4: Project Writeup, Officially Due 6 May 2016 (45pts)

This will be a short paper (6-8 pages) that will be in the style of an a short academic conference/journal/workshop
paper and should have the following sections:

1. Introduction – describe your project and provide some background on what you are looking at

2. Related Work (what you submitted in Part 2 possibly extended a little to fit the flow of the paper)

2



3. Experimental Setup – list everything you did to set up your project. List benchmarks used, compiler
options, hardware used, software versions, etc. It is best to provide too much than too little. Charts
and diagrams are fine too.

4. Results / Analysis – describe what you found, feel free to include graphs and tables

5. Conclusion / Future Work

6. Bibliography / References Cited

Ideally any source code will also be submitted as a separate file, but I understand there might be various
reasons why you cannot include this.

Also I would like to post final reports to the class web-site. If you’d rather not have your work posted in
that way, let me know.

You can e-mail your final report to me. pdf or word document is fine, the code should be attached too.

Project Ideas:

• Power/Energy overhead of architectural features

– Power/Energy overhead from prefetching (can turn off prefetching on some systems, like core2,
in theory cortex a9, and many recent intel chips)

– Power/Energy overhead from branch prediction (can turn off branch predictors on MIPS chips,
not sure about ARM)

– Power/Energy overhead from caches (find a system you can disable the cache? The ARM sys-
tems)

– Power/Energy overhead from virtual memory

– Power/Energy implications from frequency scaling

– Power/Energy implications from GPUs

– Power/Energy implications from network devices (ethernet, wireless, bluetooth, etc)

– Power/Energy implications from vector instructions (SSE)

– Power/Energy implications of multi-threading or multi-processing

• Hardware Performance Counters

– Performance counter validation tests

– Estimating power/energy using performance counters

– Validating RAPL energy measurements on real hardware.

• Operating Systems

– Power/Energy comparison of same task under various operating systems (Linux, OSX, Windows,
FreeBSD, etc.)

– Make DVFS frequency scaling decisions based on hardware counter results

– Make power/energy/performance characteristics of various Linux kernel versions

3



• Architectural Comparisons

– Power/Energy vs performance on various ARM processors

– Power/Energy vs performance on ARM vs x86

– Power/Energy of other embedded system or DSP boards

• Application Investigation

– Pick a favorite application type and compare the power/ performance of various implementations

– Investigate the power/performance of a benchmark when varying compiler options

– Pick a poorly behaving benchmark (power or performance wise), find the cause of poor perfor-
mance, and improve it.

• Simulation

– Branch predictor competition http://www.jilp.org/cbp2016/

– Explore power/performance of an architectural feature using a simulator or DBI tool.

• Many other topics are open for investigation, feel free to suggest something.

4

http://www.jilp.org/cbp2016/

