ECE 571 – Advanced Microprocessor-Based Design Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

7 February 2017

Announcements

- HW#1 and HW#2 grades out
- HW#3 was posted
- Note, the equake benchmark takes a while to run (a few minutes). Don't give up on it.

Power and Energy

Definitions and Units

People often say Power when they mean Energy

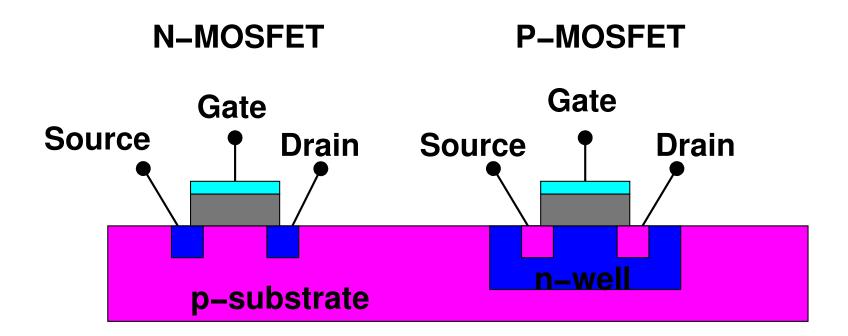
- Energy Joules, kWH (3.6MJ), Therm (105.5MJ), 1 Ton TNT (4.2GJ), eV $(1.6 \times 10^{-19} \text{ J})$, BTU (1055 J), horsepower-hour (2.68 MJ), calorie (4.184 J)
- Power Energy/Time Watts (1 J/s), Horsepower (746W), Ton of Refrigeration (12,000 Btu/h)
- \bullet Volt-Amps (for A/C) same units as Watts, but not same thing
- Charge mAh (batteries) need V to convert to Energy

Power and Energy in a Computer System

Power Consumption Breakdown on a Modern Laptop, A. Mahersi and V. Vardhan, PACS'04.

- Old, but hard to find thorough breakdowns like this
- Thinkpad Laptop, 1.3GHz Pentium M, 256M, 14" disp
- Oscilloscope, voltage probe and clamp-on current probe
- Measured V and Current. P=IIR. V=IR P=IV, subtractive for things w/o wires
- Total System Power 14-30W
- Old: no LED backlight, no SDD, etc.

Modern results are from CUGR/REU student research.


	Laptop (2004)	Modern	Server?
Hard Drive	0.5-2W	5W	
LCD	1W		
Backlight	1-4W		
CPU	2-15W	60+W	
GPU	1-5W	50+W	
Memory	0.5-1.5W	1-5W	
Power Supply	0.65W		
Wireless	0.1 - 3W		
CD-ROM	3-5W		
USB	(max 2.5W)		
USB keyboard		0.04W	
USB mouse		0.03W	
USB flash		0.5W	
USB wifi		0.5W	

CPU Power and Energy

CMOS Transistors

CMOS Dynamic Power

- $P = C\Delta V V_{dd} \alpha f$ Charging and discharging capacitors big factor $(C\Delta V V_{dd})$ from V_{dd} to ground α is activity factor, transitions per clock cycle F is frequency
- Some pass-through loss (V momentarily shorted)

CMOS Dynamic Power Reduction

How can you reduce Dynamic Power?

- Reduce C scaling
- Reduce V_{dd} eventually hit transistor limit
- Reduce α (design level)
- \bullet Reduce f makes processor slower

CMOS Static Power

- Leakage Current bigger issue as scaling smaller.
 Forecast at one point to be 20-50% of all chip power before mitigations were taken.
- Various kinds of leakage (Substrate, Gate, etc)
- ullet Linear with Voltage: $P_{static} = I_{leakage}V_{dd}$

Leakage Mitigation

- SOI Silicon on Insulator (AMD, IBM but not Intel)
- High-k dielectric instead of SO2 use some other material for gate oxide (Hafnium)
- Transistor sizing make only the critical transistors fast; non-critical ones can be made slower and less leakage prone
- Body-biasing
- Sleep transistors

Notes on Process Technology

- 65nm 2006
 p4 to core2, IBM Cell
 1.0v, High-K dielectric, gate thickness a few atoms
 193/248nm light (UV)
- 45nm 2008
 core2 to nehalem
 large lenses, double patterning, high-k
- 32nm 2010

sandybridge to westmere immersion lithography

- 22nm 2012 ivybridge, haswell oxide only 0.5nm (two silicon atoms) fin-fets
- 14nm and smaller ??
 Extreme UV (13.5nm light, hard-vacuum required)?
 Electron beam?

Notes on Process Technology

- TI-OMAP cell phone processor (more or less discontinued by TI, big layoffs in 2012)
 Beagle Board and Gumstix OMAP35?? – 65nm
- OMAP4460 (Pandaboard) 45nm
- Cortex A15 28nm
- Rasp-pi BCM2835 45nm?

Total Energy

• $E_{tot} = [P_{dyanmic} + P_{static}]t$

•
$$E_{tot} = [(C_{tot}V_{dd}^2\alpha f) + (N_{tot}I_{leakage}V_{dd})]t$$

Delay

$$\bullet \ T_d = \frac{C_L V_{dd}}{\mu C_{ox}(\frac{W}{L})(V_{dd} - V_t)}$$

- ullet Simplifies to $f_{MAX} \sim rac{(V_{dd} V_t)^2}{V_{dd}}$
- ullet If you lower f, you can lower V_{dd}

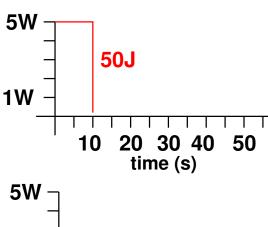
Thermal Issues

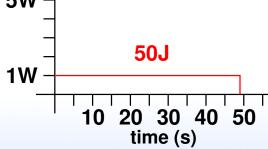
- Temperature and Heat Dissipation are closely related to Power
- If thermal issues, need heatsinks, fans, cooling

Metrics to Optimize

- Power
- Energy
- MIPS/W, FLOPS/W (don't handle quadratic V well)
- \bullet Energy * Delay
- \bullet $Energy * Delay^2$

Power Optimization


 Does not take into account time. Lowering power does no good if it increases runtime.



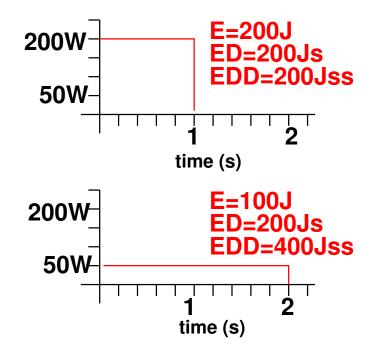
Energy Optimization

 Lowering energy can affect time too, as parts can run slower at lower voltages

Which is better?

Energy Delay – Watt/t*t

- Horowitz, Indermaur, Gonzalez (Low Power Electronics, 1994)
- Need to account for delay, so that lowering Energy does not made delay (time) worse
- Voltage Scaling in general scaling low makes transistors slower
- Transistor Sizing reduces Capacitance, also makes transistors slower



- Technology Scaling reduces V and power.
- Transition Reduction better logic design, have fewer transitions
 - Get rid of clocks? Asynchronous? Clock-gating?

ED Optimization

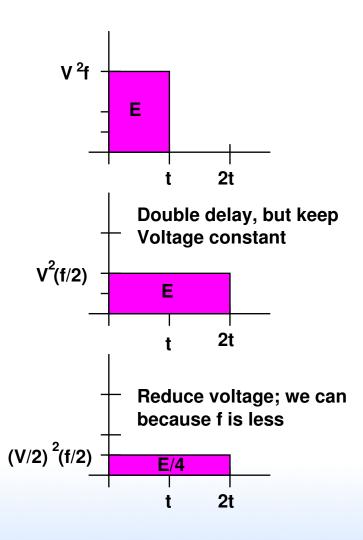
Which is better?

Energy Delay Squared— E*t*t

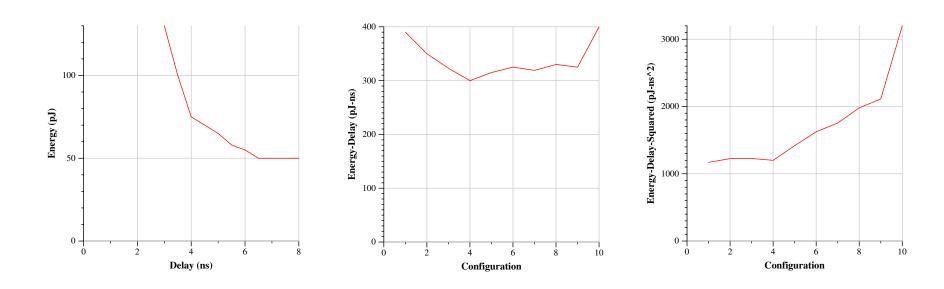
- Martin, Nyström, Pénzes Power Aware Computing, 2002
- Independent of Voltage in CMOS
- Et can be misleading
 Ea=2Eb, ta=tB/2
 Reduce voltage by half, Ea=Ea/4, ta=2ta, Ea=Eb/2, ta=tb
- Can have arbitrary large number of delay terms in Energy product, squared seems to be good enough

Energy Delay / Energy Delay Squared

Lower is better.


Energy	Delay	$\mid ED \mid$	D^2
5J	2s	10Js	$20Js^2$
5J	3s	15Js	$45Js^2$

Same ED, Different ED^2


Energy	Delay	ED	ED^2
5J	2s	10Js	$20Js^2$
2J	5s	10Js	$\int 50 J s^2$

Energy Example

Energy-Delay Product Redux

Roughly based on data from "Energy-Delay Tradeoffs in CMOS Multipliers" by Brown et al.

Raw Data

Delay	Energy	ED	ED^2
3	130	390	1170
3.5	100	350	1225
3.8	85	323	1227
4	75	300	1200
4.5	70	315	1418
5	65	325	1625
5.5	58	319	1755
6	55	330	1980
6.5	50	390	2535
8	50	400	3200

Other Metrics

- $Energy Delay^n$ choose appropriate factor
- $Energy-Delay-Area^2$ takes into account cost (die area) [McPAT]
- Power-Delay units of Energy used to measure switching
- Energy Delay Diagram [SWEEP]
- Energy-Delay-FIT (reliability?)

