
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 February 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#5 was posted. About branch predictors

• Don’t wait until last minute, is a bit more complex.

Log into two machines.

• People expressing interest in project, will post more info

soon but feel free to start thinking of ideas.

1



Some last branch predictor things

• Can turn off branch prediction on some machines. Most

notably on the ARM1176 chip in a Raspberry Pi.

• Branch predictor could make OK project idea. Branch

predictor contest makes an interesting starting point

(with Pin). Last year people had trouble getting it

going, and it’s tough to think up a new idea that hasn’t

been tried.

2



Branch Predictor Energy

• How much Energy does a branch predictor take?

• Often modeled as memory. Only in more complex setups

does the logic take much space.

• How much die area (how many bits) (leakage)

• How often are they updated

• Do you need to store branch history on context switch?

3



• What happens if you turn off branch predictor? Will

your code still run?

4



Branch Predictor Energy

• Parikh, Skadron, Zhang, Barcella, Stan

• 4 concerns:

1. Accuracy. Not affect power, but performance

2. Configuration (may affect power)

3. Number of lookups

4. Number of updates

• Tradeoff power vs time.

• brpred can be size of small cache, 10% of power

• Can use banking to mitigate

5



Branch Predictors

• can watch icache, not activate predictor if nobranches

• Pipeline gating, keep track of each predicted branch

confidence. If confidence hits certain threshold, stop

speculating. Show this may or may not be good.

• Integer code, large predictors good

• FP, tight loops, predictors not as important.

6



Branch Predictor Evaluation

• (Strasser, 1999). Simulation, small branch predictor can

help energy.

• (Co, Weikle, Skadron) Formula for break even point.

Leakage matters, what brpred hides is stall cycles.

• SEPAS: A Highly Accurate Energy-Efficient Branch

Predictor (Baniasadi, Moshovos. ISLPED 2004).

Once a branch prediction reaches steady state (unlikely

to change) stop accessing/updating predictor, saving

7



energy.

• Low Power/Area Branch Prediction Using Complementary

Branch Predictors (Sendag, Yi, Chuang, Lija. IPDPS

2008)

Complementary Branch Predictor to handle the tough

cases.

8



Branch Predictors and Code Type

• What type of code is easiest to predict?

Regular Loops

Ofte found in large scientific “floating-point” workloads

• What is hard to predict? User input, random

data/parsing with lots of conditional branches.

“integer benchmarks”, things like compilers, parsers,

compression

9



New Topic – Caches

“Almost all programming can be viewed as an exercise in

caching.” – Terje Mathisen

First Data Cache: IBM System/360 Model 85, 1968

Good survey paper, Ajay Smith, 1982

Computer Architects don’t like to admit it, but no amazing

breakthroughs in years. Mostly incremental changes.

10



What is a cache?

• Small piece of fast memory that is close to the CPU.

• “caches” subsets of main memory

• Managed automatically by hardware (can you have a

software controlled cache? Scratchpad memory? Why

aren’t they used more? Hard to do right.)

11



Memory Wall

• Processors getting faster (and recently, more cores) and

the memory subsystem cannot keep up.

• Modern processors spend a lot of time waiting for

memory

• “Memory Wall” term coined by Wulf and McKee, 1995

12



Exploits Program Locality

• Temporal – if data is accessed, likely to be accessed

again soon

• Spatial – if data is accessed, likely to access nearby data

Not guaranteed, but true more often than not

13



Memory Hierarchy

There’s never enough memory, so a hierarchy is created of

increasingly slow storage.

• Older: CPU → Memory → Disk → Tape

• Old: CPU → L1 Cache → Memory → Disk

• Now?: CPU → L1/L2/L3 Cache → Memory → SSD

Disk → Network/Cloud

14



Cache Types

• Instruction (I$) – holds instructions, often read only

(what about self-modifying code?)

can hold extra info (branch prediction hints, instruction

decode boundaries)

• Data (D$) – holds data

• Unified – holds both instruction and data

More flexible than separate

15



Cache Circuitry

• SRAM – flip-flops, not as dense

• DRAM – fewer transistors, but huge capacitors

chips fabbed in DRAM process slower than normal CPU

logic

16



Cache Circuitry

Column Decoder

R
o

w
 D

e
c
o

d
e
r

Sense Amps

Memory Array

word line

b
it

 l
in

e

WL

!BL BL

DRAM

SRAM

WL

!BL BL

• Upside of DRAM? Smaller, can fit more.

17



• Upside of SRAM? No need to refresh.

• Which is faster/lower energy? Used to be SRAM but

not so clear anymore.

• Why not use DRAM in caches? Process tech doesn’t line

up well. Process for good capacitors makes for slower

logic.

• Recent advances (trench capacitors, etc) have changed

this a bit. IBM Power machines with large DRAM

caches.

18



UMA and NUMA

CPU CPU CPU CPU

MemMemMem

MemMemMem

UMA NUMA

• UMA – Uniform Memory Access

same speed to access all of memory

• NUMA – Non-Uniform Memory Access

accesses to memory connected to other CPU can take

longer

19



Cache Coherency

• Protocols such as MESI (Modified, Exclusive, Shared,

Invalid)

• Snoopy vs Directory

20



Cache Associativity

• direct-mapped – an address maps to only one cache line

• fully-associative (content-addressable memory, CAM) –

an address can map to any cache line

• set-associative – an address can map to multiple “ways”

• scratchpad – software managed (seen in DSPs and some

CPUs)

21



Cache Terms

• Line – which row of a cache being accessed

• Blocks – size of data chunk stored by a cache

• Tags – used to indicate high bits of address; used to

detect cache hits

• Sets (or ways) – parts of an associative cache

22



Replacement Policy

• FIFO

• LRU

• Round-robin

• Random

• Pseudo-LRU

• Spatial

23



Load Policy

• Critical Word First – when loading a multiple-byte line,

bring in the bytes of interest first

24



Consistency

Need to make sure Memory eventually matches what we

have in cache.

• write-back – keeps track of dirty blocks, only writes back

at eviction time. poor interaction on multi-processor

machines

• write-through – easiest for consistency, potentially more

bandwidth needed, values written that are discarded

• write-allocate – Usually in conjunction with write-back

Load cacheline from memory before writing.

25



Inclusiveness

• Inclusive – every item in L1 also in L2

simple, but wastes cache space (multiple copies)

• Exclusive – item cannot be in multiple levels at a time

26



Other Cache Types

• Victim Cache – store last few evicted blocks in case

brought back in again, mitigate smaller associativity

• Assist Cache – prefetch into small cache, avoid problem

where prefetch kicks out good values

• Trace Cache – store predecoded program traces instead

of (or in addition to) instruction cache

27



Virtual vs Physical Addressing

Programs operate on Virtual addresses.

• PIPT, PIVT (Physical Index, Physical/Virt Tagged) –

easiest but requires TLB lookup to translate in critical

path

• VIPT, VIVT (Virtual Index, Physical/Virt Tagged) – No

need for TLB lookup, but can have aliasing between

processes. Can use page coloring, OS support, or ASID

(address space id) to keep things separate

28


