
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 March 2017

http://web.eece.maine.edu/~vweaver


Announcements

• More on HW#6

◦ When ask for reasons why cache better than other,

give details. Saying Jetson cache is better... not clear.

Is it bigger? Faster? Have more ways? Write through?

◦ Memory behavior mostly tied to size of data being

processed and memory access patterns. This might

be tangentially related to branch or integer/floating

point, but you need to make an argument why (say FP

might be accessing arrays sequentially or integer might

1



be using less regular data structures).

Memory footprint (i.e. fitting in memory) is the most

important thing for cache performance, all the other

things happen once you start getting misses.

◦ Grad Class. Not necessarily a right answer, but need

to explain.

Gathering data is often tedious but straightforward.

Analyzing/making guesses about the behavior you see

is the interesting part. Want to see you are applying

what you’ve learned to the real world results. Not

necessarily a “right” answer.

2



• HW#7 will be after the midterm

• Project topic reminder. Topic due (an e-mail from

group) on the 30th, which is next Thursday.

3



Midterm Review

Closed book/laptop/phone but can have front of one

8.5x11 piece of paper worth of notes if you want.

1. Performance/Benchmarking

• Be familiar with the general idea of performance

counters and interpreting perf results.

• Benchmark choice: it should match what you plan to

do with the computer.

• Know a little about the difference between

integer benchmarks and floating point (integer have

4



more random/ unpredictable behavior with lots of

conditionals; floating point are often regular looped

strides over large arrays or data sets)

• Be familiar with concept of skid.

2. Power

• Know the CMOS Power equation

• Energy, Energy Delay, Energy Delay Squared

• Idle Power Question

3. Branch Prediction

• Static vs Dynamic

5



• 2-bit up/down counter

• Looking at some simple C constructs say expected

branch predict rate

4. Cache

• Given some parameters (size, way, blocksize, addr

space) be able to calculate number of bits in tag,

index, and offset.

• Know why caches are used, that they exploit temporal

and spatial locality, and know the tradeoffs (speed vs

nondeterminism)

6



• Be at least familiar with the types of cache misses

(cold, conflict, capacity)

• Know difference between writeback and write-through

• Be able to work a few simple steps in a cache example

(like in HW#5)

5. Prefetch

• Why have prefetchers?

• Common prefetch patterns?

7



Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

• Security

8



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

9



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

10



Page Table

• Collection of Page Table Entries (PTE)

• Some common components:

• ID of owner

• Virtual Page Number

• valid bit,

• location of page (memory, disk, etc)

• protection info (read only, etc)

• page is dirty, age (how recent updated, for LRU)

11



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

12



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

13



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

• What do you do if you have more than 32-bits?

◦ 64-bit x86 has 4-level page tables (256TBv/64TBp)

44/40-bits?

◦ Push by Intel for 5-level tables (128PBv/4PBp)

57 bits?

◦ What happens when you have unused bits? People try

to use them, causes problems later. AMD64 canonical

14



addresses.

15



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.

16



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

17



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

18



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping

19



and TLB invalidated on all other processors

20



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out.

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux

21



What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

22



• It no physical mapping in page table, then page fault

happens

23



What happens on a page fault

• Walk the page table and see if the page is valid and

there

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk. Demand paging.

Needs to find room in physical memory. If no free space

24



available, needs to kick something out. Disk-backed

(and not dirty) just discarded. Disk-backed and dirty,

written back. Memory can be paged to disk. Eventually

can OOM. Memory is then loaded, or zeroed, and PTE

updated. Can it be shared? (zero page)

• “invalid” – segfault

25



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write

26


