
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 21

Vince Weaver

http://web.eece.maine.edu/ vweaver

vincent.weaver@maine.edu

20 April 2017

Announcements

• Project – don’t put it off until the last minute!

• HW#11 is short reading due Tuesday

• Will review for second exam next time. Similar to last

one, comprehensive with an emphasis on stuff we covered

since midterm.

1

Graphics Stuff from Last Time

• When LCD not powered, not twisted, light comes

through

• Active matrix display, transistor and capacitor at each

pixel (which can often have 255 levels of brightness).

Needs to be refreshed like memory. One row at a time

usually.

2

Homework #10

• Stream Benchmark

McCalpin (“Dr. Bandwidth”)

• What is uncore-imc? (Integrated Memory Controller)

data-reads

• DDR3 RAM, PC3-12800U, theoretical bandwidth peak

12800 MB/s

memory clock 200, (memory clock) * 4 (bus clock

multiplier) * 2 (data rate) * 64 (bits transferred) / 8

(bits/byte)

3

• stream results. matrix math. copy, scale, add,
triad=add+scale
Function Best Rate MB/s Avg time Min time Max time

Copy: 7701.9 0.020799 0.020774 0.020843

Scale: 7639.0 0.020977 0.020945 0.021108

Add: 8630.0 0.027857 0.027810 0.027921

Triad: 8676.2 0.027709 0.027662 0.027765

• perf results
77,955.86 MiB uncore_imc/data_reads/ (7.9GB/s)

6,131,860,098 dTLB-loads (52.14%)

2,463,997 dTLB-load-misses # 0.04% of all dTLB cache hits (60.57%)

946,913,959 cache-references (62.08%)

609,354,970 cache-misses # 64.352 % of all cache refs (76.98%)

29.33 Joules power/energy-ram/

9.825468096 seconds time elapsed

• Were there a lot of TLB misses? No

4

• Were there a lot of cache misses? Yes. Because if

you hit all in cache you’re not really benchmarking the

memory.

• Average power roughly 3W

• Memory behavior
• Naive

Matrix multiply sum: s=7341156451935631.000000

19,045.43 MiB uncore_imc/data_reads/ (.9GB/s)

5,152,128,624 dTLB-loads (56.24%)

3,597,441,843 dTLB-load-misses # 69.82% of all dTLB cache hits (63.26%)

90,356,928 cache-references (57.21%)

31,398,347 cache-misses # 34.749 % of all cache refs (78.10%)

19.41 Joules power/energy-ram/

21.613811048 seconds time elapsed

• Improved

5

Matrix multiply sum: s=7341156451935631.000000 (8.2GB/s)

18,997.36 MiB uncore_imc/data_reads/

5,942,778,786 dTLB-loads (57.07%)

8,408,323 dTLB-load-misses # 0.14% of all dTLB cache hits (60.02%)

140,747,413 cache-references (54.23%)

58,135,255 cache-misses # 41.305 % of all cache refs (76.17%)

4.06 Joules power/energy-ram/

2.323021314 seconds time elapsed

• ATLAS

matrix_multiply_atlas s=7341156451935575.000000

461.17 MiB uncore_imc/data_reads/ (.9GB/s)

1,575,793,710 dTLB-loads (56.56%)

82,294 dTLB-load-misses # 0.01% of all dTLB cache hits

2,699,137 cache-references (55.59%)

1,151,244 cache-misses # 42.652 % of all cache refs

0.45 Joules power/energy-ram/

0.498726688 seconds time elapsed

6

• Naive have horrible dTLB miss rate? 70%? Inefficiently

walking through memory, each TLB access a miss

• ATLAS is fastest but worst cache miss rate. 30-60x fewer

misses though so having a higher percentage doesn’t

matter

• DRAM power: 19J/21s=0.9W, 4J/2.3s=1.7W,

0.45J/0.49=0.9W

• DRAM energy/delay: 400Js, 9Js, 0.4Js

7

A History of Power Management on x86

8

Halt Instruction

• Oldest power-saving interface on x86

• Tells CPU to stay idle until an interrupt comes in

• 486-DX4 and later enters low-power mode

• Ring 0. The OS does this when idle

• Similar instruction available on 65c816

• ARM has wfi in ARMv7 and maybe hlt in ARMv8?

9

APM – Advanced Power Management

• For laptops

• Developed by Intel and Microsoft, 1992

• Made obsolete by ACPI

• Full On / APM Enabled / Standby / Suspend or

Hibernate / Off

• Calls to BIOS. BIOS often buggy.

10

ACPI – Advanced Configuration and Power
Interface

• http://www.acpi.info/presentations/ACPI_Overview.pdf

• Developed by Intel, Microsoft and Toshiba, 1996 Later

HP and Phoenix

• Full ACPI interpreter needed.

• APM was a black box to Operating System. ACPI works

with OS

• ACPI code in theory provided by Intel or similar, no need

for each manufacturer to implement (like APM)

11

http://www.acpi.info/presentations/ACPI_Overview.pdf

• OS-directed power management

• Hardware registers for interface

• BIOS provides tables, motherboard initialization

12

ACPI Sleep States

• Global vs Sleep

• G0/S0 – Working

• G1 Sleeping

◦ S1 – Caches flushed, CPU stopped, CPU and RAM

power maintained

◦ S2 – CPU powered OFF

◦ S3 – Standby, Sleep, Suspend to RAM. (RAM still on)

◦ S4 – Hibernate/Suspend to Disk – memory to disk

• G2 (S5) – “Soft Off” – power off, but power still supplied

13

to power switch and wake on lan, etc

• G3 – “Mechanical Off” – all power removed

14

ACPI C-States (Idle)

• C0 – operating

• C1 – Halt – processor not executing, but can start nearly

instantaneously (Intel C1E – lower voltage too)

• C2 – Stop-Clock – all state is stored, but might take

some time to get going again (C2E – lower voltage)

• C3 – Sleep – Processor does not keep cache coherent,

but otherwise holds state

• Processor specific (Haswell up to C10)

15

ACPI P-States (Performance/Operational)

• actual values can sometimes be configured via MSR

access.

• Some V/F combinations unstable/unsafe so BIOS only

exports known good combinations

• P0 – max power and frequency

• P1 – less than P0, DVFS

• P2 – less than P1, DVFS

• Pn – less than P(n-1), DVFS

16

ACPI T-States

• throttling

• Linear reduction in power, linear reduction in

performance

• Does not save Energy! (halve the frequency, double the

time)

• Mostly used for passive cooling

17

ACPI D-States

• for devices such as modems, Cd-ROM, disk drive

• D3 can be hot or cold (hot has aux power and can

request being moved back up, cold it is turned off)

18

CPU Scaling

• Intel SpeedStep

• Enhanced speed step. Change V and F at different

points. Slower to change frequency if V not changed

first. Bus clock keeps running even as PLL shut down

10ms transition

• AMD PowerNow! (laptop) Cool’n’Quiet (desktop)

• VIA PowerSaver/LongHaul – Fine grained DVFS

19

• p4-clockmod – mainly for thermal management,

skip clocks, hurt performance without saving energy

(throttling)

• IBM EnergyScale

• Transmeta LongRun – leakage varies due to process

variation Longrun2 monitors performance/leakage and

varies Vdd and Vt

20

DVFS

• Voltage planes – on CMP might share voltage planes so

have to scale multiple processors at a time

• DC to DC converter, programmable.

• Phase-Locked Loops. Orders of ms to change. Multiplier

of some crystal frequency.

• Senger et al ISCAS 2006 lists some alternatives. Two

phase locked loops? High frequency loop and have

programmable divider?

21

• Often takes time, on order of milliseconds, to switch

frequency. Switching voltage can be done with less

hassle.

22

Non-x86 Power Saving

23

IBM EnergyScale

• Thermal reporting

• Static and Dynamic Power Save

• “Power Folding” – reduce the number of CPUs reported

to the OS until they are all busy

• Power Capping (like RAPL)

• Fan Control – Avoid “over-cooling”

24

• Processor Nap – 2ms to wake up

• Processor Winkle (as in Rip Van) – 10-20ms to wake up,

95% of power

25

ARM Cortex A9 (Pandaboard)

• Cortex-A9 Technical Reference Manual, Chapter 2.4

Power Management

• Energy Efficient Features

– Accurate branch prediction (reduce number of incorrect

fetch)

– Physically addressed caches (reducing number of cache

flushes)

– Use of micro TLBs

26

– caches that use sequential access information? reduce

accesses to tags

– small instruction loops can operate without access

icache

• Potentially separate power domains for CPU logic, MPE

(multi-media NEON), and RAMs

• Full-run mode

• Run with MPE disabled

• Run with MPE powered off

27

• Standby – entered with wfi instruction. Processor

mostly shutdown except part waiting for interrupt

• Dormant – caches still powered

• Shutdown

28

Pandaboard Power Stats

• Wattsuppro: 2.7W idle, seen up to 5W when busy

• http://ssvb.github.com/2012/04/10/cpuburn-arm-cortex-

a9.html

• With Neon and CPU burn:
Idle system 550 mA 2.75W

cpuburn-neon 1130 mA 5.65W

cpuburn-1.4a (burnCortexA9.s) 1180 mA 5.90W

ssvb-cpuburn-a9.S 1640 mA 8.2W

29

Operating System Power Saving Strategies

• We look primarily at Linux, as it is open source and

technical debates happen in the open

• Windows and OSX often have measurably better laptop

Energy behavior due to tuning and better hardware

testing

30

Governors

• ondemand – dynamically increase frequency if at 95% of

CPU load

introduced in 2.6.9

• performance – run CPU at max frequency

• conservative – increase frequency if at 75% of load

• powersave – run CPU at minimum frequency

• userspace – let the user (or tool) decide

31

Governors – cont

• Various tunables under /sys/devices/system/cpu

• Can trigger based on ACPI events (power plug in, lid

close)

• Laptop tools

• cpufreq-info and cpufreq-set

Need to be root

32

User Governors

• typically can only update once per second

• ondemand people claim it reacts poorly to bursty

behavior

• Powernowd – scale based on user and sys time

• cpufreqd

• Obsolete with introduction of “ondemand” governor?

33

Sources of Info for Governors

• System load

• performance counters

• input from user?

34

TurboBoost

• Nehalem/Ivy Bridge/Sandy Bridge (AMD has similar

Turbo CORE)

• Some Core2 had similar “Intel Dynamic Acceleration”

• Kicks in at highest ACPI Pstate

• “Dynamic Overclocking”

35

TurboBoost – from HotChips 2011 Slides

• Monitors power, current, thermal limits, overclocks

• 100 uarch events, leakage function of temp and voltage

• P1: guaranteed stable state

P0: turbo boost, maximum possible

• 12 temp sensors on each core

• PECI – an external microcontroller, used to control fans,

package power

36

TurboBoost example

• From WikiPedia Intel Turbo Boost article

• Core i7-920XM

• Normal freq 2.0GHz

• 2/2/8/9 – number of 133MHz steps above with 4/3/2/1

cores active

• 2.26GHz, 3.06GHz, 3.20GHz

37

Tickless idle / NOHz

• Gets rid of the periodic timer tick (wakeups use Energy)

• Linux typically has periodic timer interrupt at 100,

250, or 1000Hz. Used to implement various timers,

accounting, and context switch. Waste of energy if

system is idle! (also, what if large IBM system with

hundreds of VMs all doing nothing but ticking?)

• Use timers, only schedule a wakeup if needed

• Want to limit wakeups, as they bring CPU out of sleep

38

mode or idle

• Group close-enough timers together. deferrable timers

• Depends on userspace staying quiet if possible.

Userspace does foolish stuff, like poll for file changes or

drive status, blinking cursor, etc.

• Semi-related “NOHz tasks”: Turn off all interrupts, turn

CPU into compute core for HPC

39

Suspend

• Linux supports three states:

1. Standby – minimal latency, higher energy

2. Suspend to RAM – similar to standby, lower energy.

Everything except RAM refresh and wakeup events

turned off

3. Suspend to Disk – even lower energy, high latency

40

Suspend to RAM

• Platform driver provides suspend-to-ram interface

• Often a controller supports fans, batteries, button

presses, wakeup events, etc.

• ACPI interpreter runs in kernel, reads table or AML,

essentially takes program from BIOS and runs in kernel

interpreter

• PCI has D states, D0 (awake) to D3 (asleep). D1 and

D2 are in between and optional and not used

41

• User can start suspend to RAM via ioctl or writing

“mem” to /sys/power/state

42

What happens during Suspend to RAM

• grabs mutex (only one suspend at once). Syncs disk.

Freezes userspace.

• suspends all devices. Down tree, want leaf suspended

first

• disables non-boot CPUs

• disable interrupts, disable last system devices

• Call system sleep state init

43

What happens during Wakeup

• Wakeup event comes in (WOL, button, lid switch, power

switch, etc.)

• CPU reinitialized (similar to bootup code)

• other CPUs reactivated

• devices resumed

• tasks unfrozen

44

• mutex released

• ISSUES: firmware re-load? where stored (problem if on

disk or USB disk, etc. must store in memory?)

• Graphics card coming back, as X in userspace until

recently. kernel mode setting helps

45

The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

46

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

47

Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

48

Power-Aware Scheduler

• Most of this from various LWN articles

• Linux scheduler is complicated

• maintainers don’t want regressions

• Can handle idle OK, maxed out OK. lightly loaded is a

problem

• 2.6.18 - 3.4 was sched mc power savings in sysctl but

not widely used, removed

49

• “packing-small-tasks” patchset – move small patchsets

to CPU0 so not wake up other sleeping CPUs

small defined as 20% of CPU time

• knowledge of shared power lines. treat CPUs that

must go idle together as a shared entity scheduling wise

(buddy)

• how does this affect performance (cache contention)

• Shi’s power-aware scheduling

• move tasks from lightly loaded CPUs to others with

50

capacity

• if out of idle CPUs, then ramp up and race-to-idle

• * Heterogeneous systems (such as big.LITTLE)

• Rasmussen mixed-cpu-power-systems patchset maxed

out little CPU, move task to big CPU

• task tries to use the little CPUs first before ramping up

big

51

Wake Locks and Suspend Blockers

• See “Technical Background of the Android Suspend

Blockers Controversy” by Wysocki, 2010.

• Low-power systems want “opportunistic suspend”

• Google Android propose this interface, kernel developers

push back

• System spends much of time in sleep, with just enough

power to keep RAM going and power sources of events

52

• A Wake Lock prevents the kernel from entering low

power state

• WAKE LOCK SUSPEND – prevent suspending

WAKE LOCK IDLE – avoid idling which adds wakeup

latency

• Try to avoid race conditions during suspend and incoming

events. For example, system trying to suspend, incoming

call coming in, don’t let it lose events and suspend. Take

lock to keep it awake until call over.

• Kernel high-quality timing suspended, sync with low-

53

quality RTC, time drifts

• Kernel developers not like for various reasons. All drivers

have to add explicit support. User processes. What

happens when process holding lock dies.

• You have to trust the apps (gmail) to behave and not

waste battery, no way for kernel to override.

54

CPU Idle Framework?

• In kernel, kernel developers suggest it can be used instead

of wake locks. Gives more control to kernel, doesn’t trust

userspace.

• Tracks various low-power CPU “C-states”. Knows of

Power consumption vs exit latency tradeoffs

• Lower C-states take power to come back, and might do

things like flush the cache.

• kernel registers various C-state “governors” with info on

55

them.

The kernel uses the pm qos value to choose which to

enter.

• QOS say I need latencies better than 100us, so if suspend

takes longer can’t enter that suspend state

• /sys/devices/system/cpu/cpu0/cpuidle has power and

latency values, among other things

• CPU idle stats, turbostat

• ACPI issues. Doesn’t always accurately report C-states,

56

latencies

• ACPI IDLE driver

• Alternate INTEL IDLE as poorly written BIOSes not

idling well on intel

57

Tools

• There are various tools that can show you status of

power under Linux, configure settings, etc.

• Unfortunately you usually have to run these as root

58

Tools – Powertop

• Shows cstates, wakeups, suggested settings, gpu power

• On laptops with battery connected can estimate

energy/power based on battery drain

59

Powertop–Overview

Summary: 344.6 wakeups/second, 0.0 GPU ops/seconds, 0.0 VFS ops/sec

Usage Events/s Category Description

25.1 ms/s 268.6 Process swirl -root

100.0% Device Audio codec hwC0D3: Intel

100.0% Device Audio codec hwC0D0: Cirru

259.1 M-BM-5s/s 29.6 kWork od_dbs_timer

11.1 M-BM-5s/s 17.8 Timer menu_hrtimer_notify

34.2 ms/s 2.0 Process /usr/bin/X :0 vt7 -nolist

1.2 ms/s 10.9 Timer hrtimer_wakeup

326.0 M-BM-5s/s 4.9 Timer tick_sched_timer

5.1 ms/s 1.0 Process powertop

33.3 M-BM-5s/s 2.0 Interrupt [3] net_rx(softirq)

484.3 M-BM-5s/s 1.0 Interrupt [7] sched(softirq)

75.4 M-BM-5s/s 1.0 Process sshd: vince@pts/1

46.6 M-BM-5s/s 1.0 Timer watchdog_timer_fn

60

Powertop – Idle Stats
Package | Core | CPU 0 CPU 2

| | C0 active 1.3% 0.4%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.4% 0.3 ms 0.0%

C2 (pc2) 1.1% | |

C3 (pc3) 0.0% | C3 (cc3) 0.4% | C3-IVB 0.4% 0.3 ms 0.0%

C6 (pc6) 1.5% | C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

C7 (pc7) 90.1% | C7 (cc7) 94.9% | C7-IVB 96.4% 7.4 ms 99.1%

| Core | CPU 1 CPU 3

| | C0 active 0.6% 1.1%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.0% 0.1 ms 0.0%

| |

| C3 (cc3) 0.0% | C3-IVB 0.0% 0.3 ms 0.0%

| C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

| C7 (cc7) 96.0% | C7-IVB 98.8% 26.2 ms 97.7%

61

Powertop – Frequency Stats

Package | Core | CPU 0 CPU 2

| | Actual 1202 MHz 1198 MHz

Turbo Mode 0.0% | Turbo Mode 0.0% | Turbo Mode 0.0% 0.0%

2.50 GHz 0.0% | 2.50 GHz 0.0% | 2.50 GHz 0.0% 0.0%

2.40 GHz 0.0% | 2.40 GHz 0.0% | 2.40 GHz 0.0% 0.0%

2.31 GHz 0.0% | 2.31 GHz 0.0% | 2.31 GHz 0.0% 0.0%

2.21 GHz 0.0% | 2.21 GHz 0.0% | 2.21 GHz 0.0% 0.0%

2.10 GHz 0.0% | 2.10 GHz 0.0% | 2.10 GHz 0.0% 0.0%

2.00 GHz 0.0% | 2.00 GHz 0.0% | 2.00 GHz 0.0% 0.0%

1.91 GHz 0.0% | 1.91 GHz 0.0% | 1.91 GHz 0.0% 0.0%

...

1500 MHz 0.0% | 1500 MHz 0.0% | 1500 MHz 0.0% 0.0%

1400 MHz 0.0% | 1400 MHz 0.0% | 1400 MHz 0.0% 0.0%

1300 MHz 0.0% | 1300 MHz 0.0% | 1300 MHz 0.0% 0.0%

1200 MHz 2.4% | 1200 MHz 2.4% | 1200 MHz 2.4% 0.0%

Idle 97.6% | Idle 97.6% | Idle 97.6% 100.0%

62

Powertop – Device Stats

Usage Device name

4.7% CPU use

100.0% Audio codec hwC0D3: Intel

100.0% Audio codec hwC0D0: Cirrus Logic

0.0 ops/s GPU

100.0% USB device: IR Receiver (Apple, Inc.)

100.0% USB device: BRCM20702 Hub (Apple Inc.)

100.0% USB device: usb-device-0424-2512

100.0% PCI Device: Broadcom Corporation BCM4331 802.11a/b/

100.0% PCI Device: Intel Corporation Xeon E3-1200 v2/3rd

100.0% PCI Device: Intel Corporation 3rd Gen Core processo

100.0% Radio device: btusb

100.0% USB device: Bluetooth USB Host Controller (Apple

100.0% USB device: USB Keyboard (USB)

100.0% USB device: Dell USB Mouse (Dell)

100.0% PCI Device: Broadcom Corporation NetXtreme BCM57765

63

Powertop – Tunables

>> Bad VM writeback timeout

Bad Enable SATA link power Management for host0

Bad Enable SATA link power Management for host1

Bad Enable SATA link power Management for host2

Bad Enable SATA link power Management for host3

Bad Enable SATA link power Management for host4

Bad Enable SATA link power Management for host5

Bad Enable Audio codec power management

Bad NMI watchdog should be turned off

Bad Autosuspend for USB device Bluetooth USB Host Controller

Bad Autosuspend for USB device USB Keyboard [USB]

Bad Autosuspend for USB device IR Receiver [Apple, Inc.]

Bad Autosuspend for USB device Dell USB Mouse [Dell]

Bad Runtime PM for PCI Device Intel Corporation 7 Series/C210 Se

Bad Runtime PM for PCI Device Intel Corporation Xeon E3-1200 v2/

Bad Runtime PM for PCI Device Intel Corporation 3rd Gen Core pro

64

Tools – Cpufreq

• cpufreq-info (no root) shows info of current governor

and frequency states, etc.

• cpufreq-set (needs root) – set governor or frequency

• cpurfreq-apert (needs root) – shows aperf/mperf

settings from MSR. Useful for determining frequency

values?

65

cpufreq-info
analyzing CPU 3:

driver: acpi-cpufreq

CPUs which run at the same hardware frequency: 0 1 2 3

CPUs which need to have their frequency coordinated by software: 3

maximum transition latency: 10.0 us.

hardware limits: 1.20 GHz - 2.50 GHz

available frequency steps: 2.50 GHz, 2.50 GHz, 2.40 GHz, 2.30 GHz,

2.20 GHz, 2.10 GHz, 2.00 GHz, 1.90 GHz, 1.80 GHz, 1.70 GHz,

1.60 GHz, 1.50 GHz, 1.40 GHz, 1.30 GHz, 1.20 GHz

available cpufreq governors: conservative, powersave, userspace,

ondemand, performance

current policy: frequency should be within 1.20 GHz and 2.50 GHz.

The governor ‘‘ondemand’’ may decide which speed to use

within this range.

current CPU frequency is 1.20 GHz.

cpufreq stats: 2.50 GHz:0.99%, 2.50 GHz:0.00%, 2.40 GHz:0.00%,

1.70 GHz:0.00%, 1.60 GHz:0.03%, 1.50 GHz:0.00%,

1.40 GHz:0.01%, 1.30 GHz:0.01%, 1.20 GHz:98.95% (54321)

66

Powertop – aperf/mperf

• mperf is a counter that counts at the maximum frequency

the CPU supports

• aperf counts at the current running frequency

• current frequency (for things like detecting TurboBoost)

can be detected by the ratio

67

Tools – x86 energy perf policy

• allows adjusting the msr that tells how aggressive turbo

mode is, among other things. hint at a performance vs

power preference

• comes in Linux source tree in tools/power/x86/x86 energy perf policy

68

Tools – Turbostat

• shows cstates, RAPL information, turboboost, other

things from MSRs

• comes in Linux source tree in tools/power/x86/turbostat

69

Turbostat Output

./turbostat -S

%c0 GHz TSC SMI %c1 %c3 %c6 %c7 CTMP PTMP %pc2 %pc3 %pc6 %pc7 Pkg_W Cor_W GFX_W

1.34 1.99 2.29 0 2.72 0.05 0.01 95.88 44 45 2.84 0.02 2.96 86.14 2.31 0.43 0.00

1.24 2.23 2.29 0 1.94 0.13 0.00 96.69 45 46 2.88 0.15 2.97 87.63 2.30 0.43 0.00

1.56 1.77 2.29 0 2.98 0.11 0.00 95.35 43 47 2.63 0.12 2.73 85.67 2.32 0.43 0.00

1.42 1.84 2.29 0 2.51 0.05 0.00 96.03 45 45 2.66 0.03 2.74 86.88 2.30 0.41 0.00

...

%pc6 %pc7 Pkg_W Cor_W GFX_W

2.96 86.14 2.31 0.43 0.00

2.97 87.63 2.30 0.43 0.00

2.73 85.67 2.32 0.43 0.00

2.74 86.88 2.30 0.41 0.00

70

Tools – Sensors

• no need for root if configured right

• shows temps, fans, etc

• Various other sensors from i2c bus, etc.

71

Sensors Part 1
vince@mac-mini:~$ sensors

applesmc-isa-0300

Adapter: ISA adapter

Exhaust : 1798 RPM (min = 1800 RPM, max = 5500 RPM)

TA0P: +37.0C

TA0p: +37.0C

TA1P: +37.8C

TA1p: +37.8C

TC0C: +42.0C

TC0D: +44.8C

TC0E: +42.8C

TC0F: +43.2C

TC0G: +99.0C

TC0J: +0.2C

TC0P: +40.8C

TC0c: +42.0C

TC0d: +44.8C

72

Sensors Part 2
TC0p: +40.8C

TC1C: +42.0C

TC1c: +42.0C

TCGC: +42.0C

TCGc: +42.0C

TCPG: +103.0C

TCSC: +43.0C

TCSc: +43.0C

TCTD: -0.2C

TCXC: +42.8C

TCXc: +42.8C

coretemp-isa-0000

Adapter: ISA adapter

Physical id 0: +46.0C (high = +87.0C, crit = +105.0C)

Core 0: +42.0C (high = +87.0C, crit = +105.0C)

Core 1: +45.0C (high = +87.0C, crit = +105.0C)

73

When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)

74

