
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 22

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 April 2017

http://web.eece.maine.edu/~vweaver


Announcements

• Presentations next week

• Second Exam next Class

1



Exam Review

Can bring one 8.5x11” page of notes

• Prefetch

◦ Difference between hw/sw prefetch

◦ Power/performance impact of prefetcher

• Virtual Memory

◦ What is it good for?

◦ Physical vs Virtual Memory

◦ TLB purpose

• DRAM

2



◦ SRAM vs DRAM

◦ NVRAM

• System Energy

◦ Which parts of the system contribute power usage

◦ How can the O/S reduce power being used

• Mobile Energy

◦ Are mobile power usage concerns different than System

Power concerns?

3



Reading 1

ARM Reveals Cortex-A72 Architecture Details

by Andrei Frumusanu

http://www.anandtech.com/show/9184/arm-reveals-cortex-a72-architecture-details

Cortex-A72 Announced Feb 2015, this article from April

2015.

Is there a newer Cortex-A chip?

4

http://www.anandtech.com/show/9184/arm-reveals-cortex-a72-architecture-details


Highest Performance

• CoreLinux, Mali, MMU-400, NIC-400, ELA-500

(embedded logic analyzer)

• A72 direct successor to A57. Names purely marketing.

• How much performance from design, how much from

shrink to 14nm/16nm process? FinFET

• Process size is getting more and more hand-wavy

• 3.5x performance of Cortex A15 in smartphone envelope

• 75% less energy for same workload

• A57 had problems running at peak frequency without

5



having to scale down.

• 16nm FF POP? (finfet package-over-package?)

• Note they are comparing against Cortex-A15 not A57

directly. A15@28nm, A57@20nm 1.9x better, A57@16nm

2.6x better, A72@16nm=3.5x better. Normalize, 1.3

times better than A57?

• Sustained 750mW operating at 2.5GHz

6



Next-Generation Performance

• Performance, interesting mix of benchmarks. SPEC2006,

Stream, LMBench, bunch of others.

• 16-30% improvement in IPC

• Performance, Power, Area

• Better branch predictor “sophisticated new, reduce

energy from mispredict and speculation” Bypasses

completely if doing a bad job

• Fancier decode, ARM64 instruction fusion. Lots of

power optimization

7



• 3-way L1-icache at direct mapped power?

• 5-wide dispatch

• Advanced FP/SIMD unit: 3-cycle FMUL, 3-cycle FADD,

6-cycle FMAC, 2-cycle CVT ???, radix-16 FP divider

• radix-16 division?

• improved CRC unit

• L1/L2 bandwidth improved by 30%. Sophisticated

prefetcher? Lots of power optimization

• L1 way predictor (reduce hit power)

• Power-optimized RAM organization

• Extensive power in L2-idle?

8



Reading 2

A walk through of the Microarchitectural improvements

in Cortex-A72

https://community.arm.com/groups/processors/blog/2015/05/04/a-walk-through-of-the-microarchitectural-improvements-in-cortex-a72

9

https://community.arm.com/groups/processors/blog/2015/05/04/a-walk-through-of-the-microarchitectural-improvements-in-cortex-a72


Blog Posting

Single core FP performance (For me, linpack/cores)

Type Cores ARM Reported My own measurement (LINPACK)
Cortex-A8 1 1.0 1.0 (BBB: 0.068)
Cortex-A9 2 ? 7.0 (Panda: 0.95/2)
Cortex-A9 4 ? ??

Cortex-A15 8 11x 20x (Chrome: 5.44/4)
Cortex-A53 16x (Dragon: 2.2/2)
Cortex-A57 ? 12x 58x (Jetson: 16.0/4)
Cortex-A57 15x
Cortex-A72

• Tradeoff – larger branch predictor can cost more power

10



but reduce speculation so save energy

• Cache– found way for 3-way cache to have similar power

to direct mapped

• TLB – can turn off high bits when assuming locality?

• Branch predictor – optimize for close branches?

• Micro-op handling?

• Lots of power optimization

• Better prefetcher

• L1 dcache-hit predictor

• Power optimization in L2-idle case

• Big-little with Cortex-a53

11



Jetson TX-1

NVIDIA Announces Jetson TX1 - A Tegra X1 Module
& Development Kit
by Ryan Smith

12



Jetson TX-1

• We used this board for the homeworks, released in

November 2015.

• There’s now a Jetson-TX2

• Nintendo Switch has a Tegra X1 in it

• Tegra X1 SoC

• 64-bit ARM Cortex A57 CPUs (4 cores)

13



• “1-TFLOP” 256-core Maxwell class GPU

When run double-precision hpl CUDA get around 7

GFLOPS which is even less than the CPU gets, although

the fan doesn’t come on at all.

• 4GB LPDDR4 memory (25.6 GB/s)

• Full featured ITX-size I/O carrier board: gigabit

Ethernet, wifi, USB, GPIOs, camera, PCIe slot

• 10W of power

• PCIe, Ethernet

14



Nvidia

• Push for machine learning?

• Drive PX? – auto-driving cars

15



Maxwell GPU

The NVIDIA GeForce GTX 980 Review: Maxwell
Mark 2
by Ryan Smith

16



Maxwell GPU Page 1

• Article said it was maxwell-like, so an article on Maxwell

• Kepler, Maxwell, Pascal

• At this point (2014?) stuck at 28nm process

17



Maxwell GPU Page 2

• Mobile-first strategy, and scaling up

• GFLOPS/W from 15-30? (Best in my lab currently

around 2 for a high-end haswell-ep server), best ARM is

jetson at 1.2

• Managed to double flops/w over kepler while staying in

same process

• Grid layout of the GPU

18



• Only texture units and FP64 CUDA cores are shared,

which is greatest power saving

Shared resources good, but only if using them, and

crossbar sucks lots of power

• Other power features: better scheduler, fewer units

• Increase cache size. Larger static power, but can reduce

data that has to go over memory bus

• Transistor optimization (not many details)

19



Maxwell-2 GPU Page 3

• ROP = render output unit

• Color compression, drastically reduce bandwidth needed

20



Maxwell-2 GPU Page 4

• Direct3d features

• HDMI 2.0 needed for 4k displays at 60Hz.

3840 pixels * 2160 (8.3 Megapixels)

HDMI 2.0 allows up to 18 Gbit/s

• VR-direct

• Latency reduction, from 50ms to 40ms

• antialiasing

21



More GPU Stuff

• What is meant by a FLOP? 64/32/16-bit

22



Reading

Where is the energy spent inside my app? Fine
Grained Energy Accounting on Smartphones with
Eprof
by Pathak, Hu, and Zhang

23



Intro

• Apps limited by battery life

• energy consumption is important

1. Track at level of “program entities” (i.e. thread,

routines, etc)

2. Track various components

3. Need to map power used to the entities

• cell phones do not have built-in power meters.

• asynchronous power behavior: power draw might not be

related to running app:

24



1. Tail power (GPS, wifi, sdcard) (ref 4,5)

2. persistent power wakelocks

lock keeps phone from sleeping. can extend beyond a

routine

3. “exotic” components: camera and GPS start when

switched on by one and continue until switched off

(even if app switched in doesn’t use it)

• eprof fine-grained energy profiler ”first” for modern

• cellphones on Android and Windows Mobile

• Leverages fine-grained power modeling from [4]

• system call driven finite-state-machine?

25



• last-trigger policy?

• look at 6 of the most 10 popular apps in android market

• Surprising results:

◦ ad modules consume 65-75%

◦ clean termination of TCP sockets 10-50% of energy

◦ tracking user data 20-30%

◦ Actual application only 20-30%

◦ Majority energy in 3G, Wifi, GPS. I/O energy

important CPU optimization might be waste of time.

◦ asynchronous power behavior important ”I/O

energybundles” component stays in high power state

26



Much of I/o energy triggered by small amount of

routines

• Accounting granularity

27



Accounting Granularity

• Granularity: a process, a thread, a subroutine, a system

call

• Threads are important as often apps often have third-

party threads running

• System calls often trigger different power states, so track

them

• They track call stacks when system calls made.

Periodically poll things. And log threadID at context

switch

28



Asynchronous Power Behavior

• Lots of components (CPU, mem, sdcard, wifi, nic, 3G,

bluetooth, GPS, camera, accelerometer, digital compass,

lcd, touch sensor, microphone, speakers) and many use

as much power as CPU

• Tail power: a routine can start up a high-power

component but it does not shut off until long after

the component is done

• Wakelocks: some things must keep the phone from

29



sleeping. i.e sync, etc. source of bugs

• Exotic components: app can turn on something like CPU

and it stays on after context switch, even if other app

not using it

• Measuring power current drawn through battery.

30



Accounting Policies on Cellphones

• How to attribute energy use to what caused it

• example, send some data. Ramps up the 3G radio for

2.5s before actually start. 61uAH. But still draws power

for 6s after completed

• Why uAH? Batteries often rated in AH (Charge). Not

the same as Joules (energy) AH not take into account

voltage. Voltage can change while battery discharging.

• If multiple processes use the radio, how split up the cost?

Weights?

31



• Last-trigger policy: attribute tail to last routine that

would trigger.

• If multiple system calls using component, try to split up

evenly among them

• High-rate components: not cover RAM or OLED.

• RAM modeled with LLC performance counter.

Interesting they try to use perf event

• OLED power can be calculated based on the *colors* on

the screen. Can screen-scrape and estimate

32



Eprof

• Android and Windows Mobile (only describe Android in

this paper)

• SDK Routine tracing: Android Dalvik VM provides

runtime tracing

• NDK Routine Tracing: native development kit

• System Call Tracing: use ADB (Android Debugger)

logging. Also modify bionic C library

33



• Modify framework to do syscall tracing without having

to modify programs (no source)

• Accounting and Data Presentation

34



Evaluation/Related Work

• Split-time accounting. Samples, accounts power to

whatever running at sample time?

• Accuracy, split-time is worst as it attributes asynch power

to pid0

• Overhead, both power and performance

35



Applications/Benchmarks

• 3G, no room for wifi results

• Android Browser

Google triggers GPS. 53/31/16 CPU/3g/GPS

34 threads

• Angry Birds

time in ads, etc

• Free Chess

ads

36



• NYTimes

Obfuscated code, ads

• Finding energy bugs

Found wakelock bug which was reported and fixed

37



Optimizing I/O Energy using Bundles

• I/O consumes most of energy

• I/O energy in a few bundles

• Very few routines perform I/O

38


