ECE 571 — Advanced

Microprocessor-Based Design
Lecture 11

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

27 February 2018

http://web.eece.maine.edu/~vweaver

Announcements

e HW#5 was posted, Caches

HW4#4 (brpred) review

e Measurements

o Bzip2 on Haswell/Quadro
iInstr=19,2001M, branches=2,916M,conditional=2,612M
oranch:instr 15% (1:6),conditional 13.6% (1:7)%
f way too low, entering command wrong (no file error
ow counts)
o equake_|l on Haswell/Quadro
instr=1,238B,branches=99B,conditional=81B
branch:instr 7.7% (1:13), conditional 6.3% (1:16)

-y 2

o Branch miss rate Haswell bzip2 = 7.07%, equake_l =
0.49%

o Speculative execution Haswell bzip2: roughly 72%
retired, equake_l: roughly 53% retired

o ARM64 bzip2 branch ratio:
instr=20,141M, branches=3,344M, 17% (1:6)

o ARM64 branch miss rate: 7.7%

e Questions
o Why BR% ratio differ?
Compiler being stupid? These are SPEC benchmarks
so you can bet that these bencharks are being

-y 3

optimized as completely as possible.
Floating point vs Integer code. Floating point, like
equake, tends to have lots of regular loops over big
blocks of calculations. Integer code like compilers and
compression reads user data and makes decisions, so
many more if/then loops on irregular data.
How could you determine the cause?

o BR ratio on bzip haswell /arm647
actually about the same considering arm64 is more
typically RISC and x86 CISC. ARM32 is 1:16 (why?
probably conditional execution. How could you tell?)

-y 1

o Miss rate differ? FP vs Int program.
Loops easier to predict.

o Different branch predictors.

o Pi worse (17.6%) Lower end CPU?
Note, ARM64 *complete* different than ARM32
Smaller structures? 32-bit code? Fewer branches

(Conditional execution) so ones left are harder?
Cortex-Ab3

HW=#4 brpred hardware

o Cortex A-53

o single entry Branch Target Instruction Cache (BTIC)

o 256-entry Branch Target Address Cache (BTAC) to
predict the target address of indirect branches.

o The branch predictor is global, uses branch history
registers, a 3072-entry pattern history prediction table

o 8-entry return stack to accelerate returns from
procedure calls

e Cortex-A57

-y 6

o 2-level dynamic predictor with Branch Target Buffer
(BTB)
o Static branch predictor.
o Indirect predictor.
o Return stack.
o Haswell
o It's a secret (even Agner Fogg doesn't know)
e power efficiency when lots of speculation?
e What kind of benchmark? random? on ivybridge

branch—-mul
5000138 4999862

-y ;

20,123,251 branches

5,004,391 branch-misses
branch-rand
170,143,753 branches
10,358,447 branch-misses
branch-random:
150,139,161 branches
10,622,205 branch-misses

Prefetching

As we saw, Cold misses are very common.

Try to avoid cache misses by bringing values into the cache
before they are needed.

Caches with large blocksize already bring in extra data
in advance, but can we do more?

Prefetching Concerns

e \When?
We want to bring in data before we need it, but not too
early or It wastes space in the cache.

e Where? What part of cache? Dedicated buffer?

/Y 10

Limits of Prefetching

e May kick data out of cache that is useful

e Costs energy, especially if we do not use the data

11

Implementation Issues

e Which cache level to bring into? (register, L1, L2)

e Faulting, what happens if invalid address

e Non-catchable areas (MTRR, PAT).
Bad to prefetch mem-mapped registers!

12

Software Prefetching

e ARM has PLD instruction

e PREFE

CHW for write (3dnow, Alpha) cache protocol

e Prefetch, evict next (make it LRU) Alpha

e Prefetch a stream (Altivec)

e Prefetch0, 1, 2 to all cache levels (x86 SSE)
Prefecthnta, non-temporal

13

Hardware Prefetching — icache

e Bring in two cache lines
e Branch predictor can provide hints, targets

e Bring in both targets of a branch

14

Hardware Prefetching — dcache

e Bring in next line — on miss bring in N and N+1 (or
more?)

e Demand — bring in on miss (every other access a miss

with linear access)
Tagged — bring in N+1 on first access to cache line (no

misses with linear access)

Hardware Prefetching — Stride Prefetching

e Stride predictors — like branch predictor, but with load
addresses, keep track of stride

e Separate stream buffer?

/Y 16

Stride Predictor

0x10004002: Idb r1,0x0000 0200

last load e stride

= | 0000 0100

+100

Prefetch
/ 0000 0300

17

Hardware Prefetching —
Correlation/Content-Directed Prefetching

e How to handle things like pointer chasing / linked lists?

e Correlation — records sequence of misses, then when
traversing again prefetches in that order

e Content directed — recognize pointers and pre-fetch what
they point to

-y 18

Using 2-bit Counters

e Use 2-bit counter to see if load causing lots of misses, if
so automatically treat as streaming load (Rivers)

e Partitioned cache: cache stack, heap, etc, (or little big
huge) separately (Lee and Tyson)

-y 19

Cortex A9 Prefetch

e PLD — prefetch instruction
has dedicated instruction unit

e Optional hardware prefetcher. (Disabled on pandaboard)

e Can prefetch 8 data streams, detects ascending and
descending with stride of up to 8 cache lines

e Keeps prefetching as long as causing hits

e Stops if: crosses a 4kB page boundary, changes context,

-y 20

a DSB (barrier) or a PLD instruction executes, or the
program does not hit in the prefetched lines.

e PLD requests always take precedence

-y 21

Quick Look at Haswell Prefetch

® https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-procs

e 4 prefetches, can independently disable

e |2 hardware prefetcher — fetch data or code into L2

e |2 adjacent cache line prefetcher — bring in 2 cache lines
(128B)

e DCU prefetcher — fetch into L1-D cache

e DCU IP prefetcher — use load history to predict what to

oring In

/Y 22

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

Investigating Prefetching Using Hardware
Performance Counters

-y 23

Quick Look at Core2 Prefetch

e Instruction prefetcher
e L1 Data Cache Unit Prefetcher (streaming).

Ascending data accesses prefetch next line

|1 Instruction Pointer Strided Prefetcher.
| ooks for strided access from particular load instructions.
-orward or Backward up to 2k apart

| 2 Data Prefetch Logic.

~etches to L2 based on the L1 DCU

-y 24

x86 SW Prefetch Instructions (AMD)

e PREFETCHNTA — SSE1, non temporal (use once)

e PREFETCHTO — SSEI1,
e PREFETCHT1 — SSEI1,
e PREFETCHT2 — SSEI1,

yrefetc

refetc

yrefetc

n to all levels
n to L2 + higher

n to L3 + higher

e PREFETCH — AMD 3DNOW! prefetch to L1
e PREFETCHW — AMD 3DNOW! prefetch for write

25

Core?2

e SSE_PRE_EXEC:NTA — counts NTA

e SSE_PRE_EXEC:L1 — counts T0O
(fxsave+2, fxrstor+b)

e SSE_PRE_EXEC:L2 — counts T1/T2

e Problem: Only 2 counters available on Core2

26

AMD (Istanbul and Later)

e PREFETCH_INSTRUCTIONS_DISPATCHED:NTA
e PREFETCH_INSTRUCTIONS_DISPATCHED:LOAD
e PREFETCH_INSTRUCTIONS_DISPATCHED:STORE

e [hese events appear to be speculative, and won't count
SW prefetches that conflict with HW prefetches

-y 27

Atom

e PREFETCH : PREFETCHNTA
e PREFETCH : PREFETCHTO
e PREFETCH: SW_L2

e These events will count SW prefetches, but numbers
counted vary in complex ways

/Y 28

Does anyone use SW Prefetch?

e gcc by default disables SW prefetch unless you specify
—-fprefetch-loop—-arrays

e icc disables unless you specify -xsse4.2 -op-prefetch=4
e glibc has hand-coded SW prefetch in memcpy ()

e Prefetch can hurt behavior:
— Can throw out good cache lines,

— Can bring lines in too soon,
— Can interfere with the HW prefetcher

/Y 29

SW Prefetch Distribution

SPEC CPU 2000, Core2, gcc -fprefetch-loop-arrays

Load Distribution mm | 0ads === TO w— T1/T2 m NTA

[e]
o
vy}

2]
o
(o8}

i
o
(o8}

N
o
(o8}

Load Instructions

g «\ «\ IR IR RIS xg & e LIRS B BRIV R WP\ 6 Q S o (¢
Rithetde et ARG et
gw %\% %\&Qﬂ% 9\6 %% o S x,f) fﬂe \\\) B g‘,egq w“\\k o o »g;o 2“&
3 BRL e B
%

Load Distribution Loads TO T1/T2 NTA

150B

100B

(&)

o

©
!

Load Instructions

30

Normalized SW Prefetch Runtime

on Core2 (Smaller is Better)

Integer SPEC CPU 2000 Normalized Runtime when SW Prefetch Enabled with -fprefetch-loop-arrays

14

0.5

Normalized Runtime

<
2

) R SRS P12 B SR AN B (P 6 20+ 'L N
'& "’@ 00\‘\ \}?\«\e\ S &2 f;)\’{\“\:e ge 6”‘(3 \\‘?‘ qox\e (&0 ‘ % '9“0

Q, € & N \e
‘@,QQ\Q‘OQ 60 (ao o \,‘6 20 e;f@ (& $ (S\ (\ R \0“\\@(\ “\\v“\ 5
M2 50 <\‘ AN A ‘;1@6\ »p‘)»p‘o»p 2"1\?

'L

&Q% S 9@% @ﬂ%“&’\%& % % <z°° o’\"’%c ")

%
v (2"7, % %’rb'f’%’f"bQQQ
'L

"L6

FP SPEC CPU 2000 Normalized Runtime when SW Prefetch Enabled with -fprefetch-loop-arrays

Normalized Runtime

The HW Prefetcher on Core2 can be
Disabled

32

Runtime with HW Prefetcher Disabled

Normalized against Runtime with HW Prefetcher Enabled
on Core2 (Smaller is Better)

Normalized Runtime when HW Prefetch Disabled = plain o W/1§‘}N Prefetch

Normalized Runtime

We\e&e 0’@ & 100 w@ga‘ %x«\ da%x% o PN Ve 6%"10“ O o gf«\\ﬁ,, 2«
QO" YOAD ,\/ % L0 eo“ WS RO e(\“ \‘3‘“\0‘(\ 2

('&Q 1,? oQ ‘3
\‘\ ‘0“\ 6 6
e S Q&g \“‘“9 T
’L
’L

o5 %mgww

'L‘:)

Normalized Runtime when HW Prefetch Disabled == plain == W/ SW Prefetch
247 258 3.82 .66

=
o

Normalized Runtime
[5=Y
1

0.5
0 A 1 O g c Q o Q N 1
A A A o o o of
. < ‘(\? \é? \\)? er,@ e\? ,\:\9 D:\Q A oC o < %é 0\‘“? 6\?
Wl A 29 = & o e o\ NG Sty
O I A X PRI N PN N P @ X

/Y 33

PAPT_PRF_SW Reuvisited

e Can multiple machines count SW Prefetches?
Yes.

e Does the behavior of the events match expectations?
Not always.

e Would people use the preset?
Maybe.

34

L1 Data Cache Accesses

float array[1000],sum = 0.0;
PAPI_start_counters(events,1);

for(int i=0; i<1000; i++) {
sum += arrayl[il];

PAPI_stop_counters(counts,1);

35

PAPI_L1_DCA

L1 DCache Accesses normalized against 1000

Na Counter Available

2,
O

Normalized Accesses
OFRPNWPMOOIO
|

A
%
%
0
&

36

Expected Code

* 4020d8:
4020dc:
4020e0:
4020e3:

£f3 Of
48 83
48 39
75 £3

Unexpected Code

* 401e18:
* 401ele:
401e23:
401e27:
* 401e2d:
401e33:

£3 Of
£f3 Of
48 83
48 3d
£3 Of
75 e3

PAPI_L1_DCA

58
cO
do

10
58
cO
e8
11

00
04

44
04
01
03
44

24 Oc
82

00 00
24 Oc

addss
add
cmp
jne

movss
addss
add
cmp
movss
jne

(Y%rax) , %xmmO
$0x4,%rax

%rdx,frax

4020d8 <main+0x328>

Oxc (%rsp) , %pxmmO
(%rdx,%rax,4) ,%xmmO
$0x1,%rax

$0x3e8, Yrax
%xmmO0 , Oxc (%rsp)
401e18 <main+0x398>

37

L1 Data Cache Misses

e Allocate array as big as L1 DCache
e Walk through the array byte-by-byte
e Count misses with PAPI_L1_DCM event

o If 32B line size, if linear walk through memory, first
time will have 1/32 miss rate or 3.125%. Second time
through (if fit in cache) should be 0%.

-y 38

PAPI_L1_DCM -
Forward /Reverse/Random

39

a|ge|leny Jaunod oN x

1 _ _ _
o Lo o Lo
o N~ W]

1.25
0.00-

) (q\
— o o o
SOSSI|\ PazIfeWwIoN

40

L1D Sources of Divergences

e Hardware Prefetching
e PAPI| Measurement Noise
e Operating System Activity

e Non-LRU Cache Replacement

41

L2 Total Cache Misses

e Allocate array as big as L2 Cache
e Walk through the array byte-by-byte

e Count misses with PAPI_L2_TCM event

42

PAPI_L2_TCM - Forward/Reverse/Random

1.75-
o
0 1,50+
V)
'5 125
_. 1.00 2
g
2075 <
(]
cU i =
E 0.50 §
CZD 0.254 2
0.00- o ——— < ——
3\ Q, 9 Q \QJ
<
&

-y 43

L2 Sources of Divergences

e Hardware Prefetching

e PAPI| Measurement Noise

e Operating System Activity

e Non-LRU Cache Replacement

e Cache Coherency Traffic

44

