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Announcements

• HW#6 was posted, Prefetcher

• Midterm: Thursday after spring break.

• Projects... this year it’s a value prediction tournament
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HW#5 Review

1. People had trouble with this.

Haswell machine has a 44-bit physical address space,

32-kB L1 data cache, 8-way set associative, 64-bytes per

line.

(a) Offset = 6 bits

(b) Index = 215/23/26 = 26 = 6 bits

Why does having 12 bits of offset+index makes VIPT

caches easier (4096 bytes)

(c) 32-bit tag
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2. Cache Example

(a) ld 0000 080f = line 0, tag 8 = hit

(b) ld ffff ffff = line f, tag ffffff = miss (cold)

(c) strb 0000 0810 = line 1 tag 8 = miss (unknown type),

and LRU says we throw out tag a, which is dirty, so

writeback

(d) strb r0, 0xffffffff – hit. Set dirty bit

3. Bzip2 on Haswell

Haswell memory parameters: L1-icache 32k/8-way/64B

L1-cache 32k/8-WAY/64B,4/5 cycles, writeback, shared

between threads

3



L2 cache 256k/8-way/64B, 12 cycles, writeback

L3 cache 8MB,64B, writeback

(What doesn’t this say? replacement policy?

inclusive/exclusive? write-back?)

Bzip: 11MB footprint

(a) L1-icache = 13k/19B = 0% miss rate

(b) L1-dcache-load = 311M/6.2B = 5% miss rate

(c) L2 = 208M/411M = 50% miss rate

(d) LLC 601k/139M = 0.4% miss rate
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(e) Note, l1-dcache is loads. Issue with l1d-stores, in Linux

4.1 (17 Feb 2015) Kleen posted patch to separate SNB

evens from HSW in Linux kernel. So your results will

change based on kernel version. Annoying. Before

there was a l1d-store events

(f) Why do the results not match up? Shouldn’t L1-

misses be same as L2-accceses? Why would they not

match up? Bug in counters, not counting stores, bug

in counter selection, other things going on in system,

shared resources, chip errata, prefetching, etc. LLC

actually uses offcore-response events
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(g) What can we tell about bzip2 behavior? Fits well in

icache. Why is L2 so bad? single threaded

4. equake l on Haswell

e-quake mem footprint 700MB

(a) L1-icache = 14M/1.4T = 0%

(b) L1-dcache = 31B/526B = 5.8%

(c) L2 = 22B/52B = 42%

(d) LLC = 8B/13B=58%

5. bzip2 on Jetson

Jetson TX-1 4 GB LPDDR4
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L1 i-cache=48 kB, 3-way,

l1 d-cache=32 kB, 2-way

l2 = 2 MB, 16-way (big?) 512 kB (little?)

(a) L1-icache = 184k/10B = 0%

(b) L1-dcache-load = 254M/6B = 4%

(c) L1-dcache-store = 56M/2.2B = 2.5%

(d) L2-dcache-load = 28M/330M = 8.5%

(e) L2-dcache-store = 21M/308M = 6.8%

(f) Why did we have to use raw events? Proper Cortex-

A57 event support not added until Linux 4.4. Need to

update the kernel, tricky on Jetson.
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Quick run-through, the path of a load

• OoO, load buffer, etc

• VIPT. So on access it looks up the physical tag in TLB

while reading out the tags from each way with the index.

Also keep in mind MESI is going on at this level.

• If tag from TLB matches a tag from cache, hit! Good!

Cache hit!

• If tag in TLB but not in cache, cache miss.

• If tag not in TLB, TLB miss. Won’t know if cache hit

until later.
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• Now let the hardware walk the page tables.

• If hardware finds the page, great! Return it back up to

the TLB

• If hardware can’t find the page, time to get the Operating

System involved. Page fault.

• Hardware has a list of what should be in memory where

(from the executable). Typically these are demand-

loaded

◦ Text/code – read from disk

◦ Data – read from disk

◦ BSS – allocate zeros
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◦ Stack – if near top growing down, auto-grow

◦ Heap – similar to stack

◦ Shared page– could already be in memory (shared lib?)

Just need to point to it.

◦ Zeros – just have one page of zeros you can point to

◦ Paged out to disk – have offset in page file, need to

load it

• Time to bring in the page! Need to find room in Physical

RAM. If no room, need to make room. Possibly paging

out to disk (this is what LRU/dirty bits are used for).

What kind of issues come up when low on RAM and

10



constantly paging same pages in and out (thrashing?)

• Page now in physical RAM, time to go backwards.

Update the page table

• Fill in the TLB. Return to memory.

• If page fault occurred, usually re-execute the instruction.

• Issues

◦ Could you have race where you re-execute it and the

page had gotten swapped out again?

◦ Can we page out the page tables? What can go wrong

there? Double faults? How many nested page faults

can you handle?
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Quick run-through, the path of a store

• Is it much different?
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Real World Examples
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Haswell Virtual Memory

• ITLB

◦ 4kB: 128 entry, 4-way, dynamic between Hyperthreads

◦ 2MB/4MB: 8, fully assoc, duplicated ht

• DTLB

◦ 4kB: 64-entry, 4-way, fixed partition

◦ 2MB/4MB: 32 entry, 4-way

◦ 1GB: 4-entry, 4-way

• STLB (second level)

◦ 4kB/2MB: 1024 entry, 8-way
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Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• page table entries that support 4KB, 64KB, 1MB, and

16MB

• global and address space ID (no more TLB flush on

context switch)

• instruction micro-TLB (32 or 64 fully associative)
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• data micro-TLB (32 fully associative)

• Unified main TLB, 2-way, 2x64 (128 total) on

pandaboard

• 4 lockable entries (why want to do that?)

• Supports hardware page table walks
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Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• Addresses can be 40bits virt / 32 physical

• First check FCSE – linear translation of bottom 32MB

to arbitrary block in physical memory (optional with

VMSAv7)
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Cortex A9 TLB

• micro-TLB. 1 cycle access. needs to be flushed if ASID

changes

• fully-associative lockable 4 elements plus 2-way larger.

varying cycles access
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Meltdown Security
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Side Channel Attacks

• Leak info in unexpected ways

• Timing attacks... code takes different number of

instructions to execute either side of if/then. If

encrypting can maybe tell difference between 0 and

1 unless each way takes exact same cycles

• Leakage: time, performance counters, RF noise,

anything shared (caches, stalls on hyperthreads), LEDs

on routers, etc
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More Meltdown

• Primarily an Intel issue, chips with speculative execution,

dating back to Pentium Pro?

• Some very high-end ARM (ARM75) too as well as IBM

Power? Not AMD though.

• Problem due to out-of-order processing and speculative

execution

• Specifically, what if the results of speculation aren’t

thrown out and can be accessed somehow

• Virtual Memory: for higher performance, kernel often

21



mapped into user address space (but with protection

bits to disallow user access)

Often the kernel also has all of physical memory mapped

somewhere so it can access all of it. (This was trickier

in 32-bit days)
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Cache Side-Channel Attacks

• Evict and Time – run and time. Then evict just one

line, then run again. If ran slower, it depended on data

in that line

• Prime and Probe – load cache full of your data. Wait

until code of interest runs. Then see how many of cache

lines got kicked out.

• Flush and Reload

◦ Single cache line granularity

◦ Use cflush or similar to kick out a cache line
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◦ Reload and time it, can tell if someone else had

reloaded it in the meantime by how fast it loads
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Meltdown – Toy Code

r a i s e e x c e p t i o n ( )

a c c e s s ( p r o b a r r a y [ data ∗4 0 9 6 ] )

• The access should never happen, as the exception

(segfault, etc) will trigger

• If exception slow enough, the access will likely be

speculatively executed

• In theory the results of the access are thrown out so you

cannot know it happened

• The speculative load might end up in the cache though,
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and you can probe to see if it did

• The *bug* is that on Intel chips you can speculatively

access kernel data from userspace and it will be cached

despite the permission mismatch.

• Why multiply by 4096? Spread across multiple pages so

the prefetcher doesn’t get in the way.
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Meltdown – Issues

• Exception Handling – either a signal handler, or else

forking a child to cause the exception

• Exception suppression transactional memory

•
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Meltdown – Limitations

• Can get false zeros. Repeat until sure.
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KASLR

• Address Space randomization. If want arbitrarily read

out kernel info need to find kernel

• Turns out that with 40 bit address space and large

physical memory (8GB) it doesn’t take too many tries

to find kernel

29



Performance

• Up to 500K/s read out
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Workarounds

• Hardware

◦ Turn off out-of-order (not possible, expensive)

◦ Not allow user speculation to access kernel addresses

◦ Not put data into cache until permission check

completes

• Software

◦ KAISER (KPTI) – map kernel in separate address

space.

Large overhead on switch in/out of kernel (syscalls,
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context switch)

Up to 30% on someworkloads, almost none on others

◦ PCID (intel’s ASID implementation on Westmere or

newer) helps avoid complete TLB flush
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Spectre – See next lecture
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