
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 March 2018

http://web.eece.maine.edu/~vweaver

Announcements

• Midterm Thurs

• Posted project description to website.

1

Midterm Review

Closed book/laptop/phone but can have front of one

8.5x11 piece of paper worth of notes if you want.

1. Performance/Benchmarking

• Be familiar with the general idea of performance

counters and interpreting perf results.

• Benchmark choice: it should match what you plan to

do with the computer.

• Know a little about the difference between

integer benchmarks and floating point (integer have

2

more random/ unpredictable behavior with lots of

conditionals; floating point are often regular looped

strides over large arrays or data sets)

• Be familiar with concept of skid.

2. Power

• Know the CMOS Power equation

• Energy, Energy Delay, Energy Delay Squared

• Idle Power Question

3. Branch Prediction

• Static vs Dynamic

3

• 2-bit up/down counter

• Looking at some simple C constructs say expected

branch predict rate

4. Cache

• Given some parameters (size, way, blocksize, addr

space) be able to calculate number of bits in tag,

index, and offset.

• Know why caches are used, that they exploit temporal

and spatial locality, and know the tradeoffs (speed vs

nondeterminism)

4

• Be at least familiar with the types of cache misses

(cold, conflict, capacity)

• Know difference between writeback and write-through

• Be able to work a few simple steps in a cache example

(like in HW#5)

5. Prefetch

• Why have prefetchers?

• Common prefetch patterns?

6. Virtual Memory

• General concept of VM

5

• Benefits of VM?

Memory Protection, each program has own address

space, allows having more memory than physical

memory, demand paging, copy-on-write for fork, less

memory fragmentation, etc.

• Why is TLB behavior important?

Depending on cache config:

worst case: (VIVT) every memory access looked up in

TLB best case: (PIPT) every cache miss looked up in

TLB

6

HW#6 Review

• Intel: prefetcht0/prefetcht1/prefetcht2/prefetchnta

Level of cache, non temporal.

objdump --disassemble-all ./bzip2 | grep prefetch | wc -l

5 of them

objdump --disassemble-all ./bzip2.swprefetch | grep prefetch

./bzip2.swprefetch: file format elf64-x86-64

401397: 0f 18 0b prefetcht0 (%rbx)

401e8c: 0f 18 88 a0 00 00 00 prefetcht0 0xa0(%rax)

... * 25 lines

• objdump --disassemble-all ./equake_l | grep prefetc

(nothing)

objdump --disassemble-all ./equake_l.swprefetch | grep prefetch

./equake_l.swprefetch: file format elf64-x86-64

7

40192a: 0f 18 0a prefetcht0 (%rdx)

401b8d: 0f 18 4d 48 prefetcht0 0x48(%rbp)

401be8: 0f 18 4d 48 prefetcht0 0x48(%rbp)

402036: 0f 18 09 prefetcht0 (%rcx)

40479a: 0f 18 4d 00 prefetcht0 0x0(%rbp)

4047a9: 0f 18 0b prefetcht0 (%rbx)

• BZIP
l2-cache-misses prefetches time

1a: bzip2: 33.1% 167M 3.14s
2a: SW prefetch: 33.3% 167M 3.16s
5a: HWdisable 43.3% 174k 3.28s
5a: HWdisable+Sw 43.9% 197k 3.25s

• Equake

8

l2-cache-misses prefetches time
3a: equake l: 15.2% 38B 79.2s
4a: equale l swpref 16.0% 38B 79.3s
5a: hwdisable 69.7% 9M 137.5s
5a: hwdisable swpref 68.3% 8M 127.4s

• Summary: disabling prefetch hurt, dramatically so on

equake.

Unclear what exactly the prefetch perf counter is

measuring

Enabling SW prefetch does not seem to do much, even

with HW prefetch disabled.

• Why? Lots of possible reasons. compiler bug. hardware

9

bug. hardware engineers not enable SW prefetch (is it

incorrect to ignore?) other.

• Errata / Specification Update. Surprised a major chip

has so many? Did this affect our results? Errata says

not our event, but the perf list description (also written

by Intel) says it might.

10

Spectre Security

• Unlike Meltdown, pretty much any processor with

speculative execution affected

• Doesn’t leak info from kernel, but from one part of

program to another

• Why a problem? Well if javascript can read anything in

rest of browser (passwords, history, etc)

• SPECulative execution, will haunt us for ages

11

Spectre Variant 1 – Bounds Check

i f (x<a r r a y 1 s i z e)

y = a r r a y 2 [a r r a y 1 [x] ∗ 2 5 6] ;

• Ideally finds this code already existing in user code

• If mispredicts the check, will speculatively access the

out-of-bounds value

• Attacker controls X

• Attacker trains the branch predictor that value is true

with lots of runs

• Then passes in a value that is wrong but branch is

12

predicted the previous way.

• array1 size is not cached, so it stalls and execution goes

beyond

• Probe the cache much like meltdown

13

Indirect Branches

• Instead of relying on user code, train up the BTB

• Doesn’t have to be the same address space, just has to

alias in the BTB

• On many machines only 30 or fewer bits of BTB used

to index

14

Spectre Variant 2 – Branch Target Injection

• X maliciously chosen

• Branch prediction manipulated to predict wrong

• arrays all kicked out of memory

• array1size was kicked out of RAM, so cache miss and

slowly get value for RAM

• meanwhile bredicts branch is good and so fetches

array2[k*256]

• Eventually figures out and squashes wrong branch, but

the fetch already underway into cache

15

Finding a gadget

• Need to find code that runs with adversarial values are

in register

• Not hard, often unused values leak across function calls

(if a function doesn’t use them)

• Need to find way to trigger a branch in a way that acts

on these as pointers.

• Then find existing indirect jump

• Train the BTB to want to jump to our gadget

• clear out cache, perform attack

16

Notes

• some i7 up to 188 instructions can execute speculatively

between

• can be triggered from Javascript. No clflush, but can

evict all of cache by reading through an array.

• branch predictors on cpus are independent?

17

Workarounds

• Software

◦ Disabe hires timers in javascript

◦ Memory barriers – can halt speculation with special

instructions, but have to insert them all through code

where it might be an issue.

◦ Kaiser/KPTI not help

◦ Retpoline and IBRS, see next slides

18

New barriers

• Added by Intel with firmware update, new MSR

• IBRS – indirect branch restricted speculation

flush branch predicto on entry to kernel, disable brpred

on hyperthread

• STIBP – single-thread indirect branch prediction –

disable brpred on sibling thread (currently they share

brpred)

• IBPB – indirect br pred barrier – flush branch predictor

state

19

retpoline

jmp #%r11

c a l l s e t u p t a r g e t

c a p t u r e s p e c :

pause ;

jmp c a p t u r e s p e c

s e t u p t a r g e t :

mov %r11 , (% r s p)

r e t

20

• Return trampoline

• Convert indirect branch into a ret in a common location,

makes it hard to train branch predictor.

• Also adds a code-trap so that if code speculates past the

branch it gets trapped in an infinite loop

• Downside: all indirect branches now slower retpoline.

21

CPU Power and Energy

Lookup http://ieeexplore.ieee.org/document/

6757323/

22

http://ieeexplore.ieee.org/document/6757323/
http://ieeexplore.ieee.org/document/6757323/

CPU Power and Energy

• Became a trendy thing to research in 1999-2002

timeframe.

• Before that usually concern was with performance.

• These days energy results are often reported as a core

part of any architectural proposal, not as a separate

issue.

• The results discussed here are academic and may or may

not be implemented in actual chips.

23

AMD Bulldozer Die Shot

Note which structures are big, using static power.

24

CPU Power Breakdown

From Fan, Tang, Huan, Gao (ISLPED’05), Chinese Godson

MIPS CPU

They gave numbers, but unclear of workload, if static or

dynamic, etc.

• Cache 36%

• TLB 13%

• FALU 10%

• ROQueue 7%

• FMUL 6%

25

• Float reg 5%

• Gen reg 5%

• MUL 2%

• MCUControl 2%

• ALU 1%

• Other 13%

26

Thermal Concerns Too

Power density exceed hot plate, approaching rocket

nozzle

TODO: Find the Intel cite for this statement.

27

Methodologies Used in These Papers

It varies, but many of these are from simulations

(sometimes validated). Anything from SPICE to “cycle-

accurate” simulators.

28

Clock Generation

• Driving high-frequency load against capacitance, trying

to keep whole chip in sync.

• Extreme Case: Alpha 21264 H-tree, 32% of power?

• Half-frequency clocks (on both edge, so clock run half

as fast) (Mudge 2001)

• Asynchronous

• Locally Asynchronous (Divide to multiple clock domains)

29

DVFS and other CPU Power/Energy Saving
Methods

• A lot of related work

• Will focus on actual implementations rather than

academic papers this time

30

DVFS

• Voltage planes – on CMP might share voltage planes so

have to scale multiple processors at a time

• DC to DC converter, programmable.

• Phase-Locked Loops. Orders of ms to change. Multiplier

of some crystal frequency.

• Senger et al ISCAS 2006 lists some alternatives. Two

phase locked loops? High frequency loop and have

programmable divider?

31

• Often takes time, on order of milliseconds, to switch

frequency. Switching voltage can be done with less

hassle.

32

Adaptive Body Biasing

• Related to but not always considered part of DVFS

• Control voltage applied to body

• Change the threshold voltage

• Reduces leakage but slows performance

33

DVFS and other CPU Power/Energy Saving
Methods

• A lot of related work

• Will focus on actual implementations rather than

academic papers this time

34

DVFS

• Voltage planes – on CMP might share voltage planes so

have to scale multiple processors at a time

• DC to DC converter, programmable.

• Phase-Locked Loops. Orders of ms to change. Multiplier

of some crystal frequency.

• Senger et al ISCAS 2006 lists some alternatives. Two

phase locked loops? High frequency loop and have

programmable divider?

35

• Often takes time, on order of milliseconds, to switch

frequency. Switching voltage can be done with less

hassle.

36

Adaptive Body Biasing

• Related to but not always considered part of DVFS

• Control voltage applied to body

• Change the threshold voltage

• Reduces leakage but slows performance

37

Cache Power and Energy

Large area, low-hanging fruit

38

Decay Caches

• Kaxiras, Ho, Martinosi (ISCA 2001)

• Turn off cache lines not being used to reduce leakage

• DRAM cache with no refresh

• Decayed values can be re-fetched from memory.

Tradeoff.

39

Drowsy Caches

• Flautner, Kim, Martin, Blaauw, Mudge. ISCA 2002.

• Move cold cache lines into “drowsy” mode.

Lower power enough to hold state, not enough to lose

contents. Reduce leakage. Better than decay as not lose

data.

• Note: in Intel Volume 3b 17.17.5.2 it mentions certain

C states might power down or otherwise turn off parts

of cache.

40

Adaptive Caches

• Albonesi (Micro 1999). Manually turn off ways in cache

with an instruction.

• Size the caches

41

Cache Compression

• Dynamic zero compression for cache energy reduction

(L Villa, M Zhang, K Asanović. Micro 2001).

• Cache Compression (“sign compression” – top bits)

Energy savings 20% (simulated) (Kim, Austin, Mudge

WMPI 2002)

42

Banking and Filtering

• Filter cache, banking (only have half of cache active)

(Mudge 2001)

• Slowing Down Cache Hits, Banked Data Cache. (Huang,

Renau, Yoo, and Torrellas. Micro 2000.)

• Vertical Banking, Horizontal Banking (Su and Despain,

ISLPED 1995).

43

Code Scheduling

• Can Schedule code for lower power.

• Better cache rates lower power. performance/power can

go hand in hand. (Kandemir, Vijaykrishnan, Irwin)

44

Branch Predictors

• Parikh, Skadron, Zhang, Barcella, Stan

• 4 concerns:

1. Accuracy. Not affect power, but performance

2. Configuration (may affect power)

3. Number of lookups

4. Number of updates

• Tradeoff power vs time.

45

• brpred can be size of small cache, 10% of power

• Can use banking to mitigate

46

Branch Predictors

• can watch icache, not activate predictor if nobranches

• Pipeline gating, keep track of each predicted branch

confidence. If confidence hits certain threshold, stop

speculating. Show this may or may not be good.

• Integer code, large predictors good

• FP, tight loops, predictors not as important.

47

Branch Predictor Evaluation

• (Strasser, 1999). Simulation, small branch predictor can

help energy.

• (Co, Weikle, Skadron) Formula for break even point.

Leakage matters, what brpred hides is stall cycles.

• SEPAS: A Highly Accurate Energy-Efficient Branch

Predictor (Baniasadi, Moshovos. ISLPED 2004).

Once a branch prediction reaches steady state (unlikely

to change) stop accessing/updating predictor, saving

48

energy.

• Low Power/Area Branch Prediction Using Complementary

Branch Predictors (Sendag, Yi, Chuang, Lija. IPDPS

2008)

Complementary Branch Predictor to handle the tough

cases.

49

Prefetching

• Prefetching does not get looked at as closely.

Various studies show it can be a win energy wise, but it

is a close thing.

• (Guo, Chheda, Koren, Krishna, Moritz. PACS’04)

HW Prefetch increase power 30%; have compiler help

augment with hints, filters.

• (Tang, Liu, Gu, Liu, Gaudiot. Computer Architecture

Letters, 2011).

50

Mixed results.

51

TLB Energy

52

TLB Optimization – Assume in Same Page

• Optimizing instruction TLB energy using software

and hardware techniques (Kadayif, Sivasubramaniam,

Kandemir, Kandiraju, Chen. TODAES 2005).

Don’t access TLB if not necessary. Compare to last

access (assume stay in same page) Circuit improvements

• (Kadayif,Sivasubramaniam, Kandemir, Kandiraju, Chen.

Micro 2002)

Generating Physical Addresses Directly for Saving

Instruction TLB Energy Cache page value.

53

TLB Optimization – Use Virtual Caches

• (Ekman and Stenström, ISLPED 2002) Use virt address

cache. Less TLB energy, more snoop energy. TLB keeps

track of shared pages.

54

TLB Optimization – Reconfiguring

• (Basu, Hill, Swift. ISCA 2012) Reducing Memory

Reference Energy with Opportunistic Virtual Caching

Have the OS select if memory region physical or virtual

cached.

• (Delaluz, Kandemir, Sivasubramaniam, Irwin,

Vijaykrishnan. ICCD 2013) Reducing dTLB Energy

Through Dynamic Resizing.

Size TLB as needed, shutting off banks. Easier if fully-

associative.

55

TLB Optimization – Memory Placement

• (Jeyapaul, Marathe, Shrivastava, VLSI’09) Try to keep

as much in one page as possible via compiler.

• Energy Efficient D-TLB and Data Cache using Semantic-

Aware Multilateral Partitioning (Lee, Ballapuram.

ISLPED’03) Split memory regions by region

(text/data/heap). Better TLB performance, better

energy.

56

Bus Protocols

• Bus Protocols

• Cache-Coherence Protocols

57

Busses

• Grey Code, only one bit change when incrementing.

Lower energy on busses? (Su and Despain, ISLPED

1995).

58

