ECE 571 – Advanced Microprocessor-Based Design Lecture 16

Vince Weaver http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 March 2018

Announcements

- HW8 will be assigned, another reading
- Project Topics were due

The AMD Zen Processor

The AMD Zen and Ryzen 7 Review: A Deep Dive on 1800X, 1700X and 1700

- By Ian Cutress
- Intel vs AMD
 - Zen 14nm + FinFets, Intel bin there since Broadwell (2014)
- Perceived issues with Bulldozer
 - \circ Good at integer workloads
 - High power consumption
 - \circ Write-through L1 and shared L2 not good

 \circ OSes not good at dual-thread scheduling

- New 14nm Fin-FET technology
- Goal is small cores
- Split AVX instructions in two and use saved space for L2 cache
- Using AM4 Socket
- 3.2-3.6GHz with turbo speeds of 4GHz
- Four core "core complexes" (CCX) connected via Infinity Fabric
- Writeback L1 cache
- Ryzen 3/5/7 and Threadripper

- DDR4 Memory
- Low Power Design
 - \circ Clock gating
 - Write-back L1
 - Micro-op cache saves re-decoding on every fetch
 - \circ Stack engine
 - Move elimination
- Throughput
 - Enhanced pre-fetcher
 - 8MB of shared L3 pure victim cache, not prefetched into

- Large 512k L2 (intel only 256k)
- o 64kB L1 icache 4-way
- 32kB L1 dcache 8-way two 16-byte loads and one 16-byte store per cycle
- SMT Simultaneous Multi-threading
- 40% IPC increase, 270% performance-per-watt increase
- Will scale to laptops too
- Goal: core, cache and power
- Core improvements
 - \circ Two threads/core
 - Branch predictor improved

- \circ 6-wide uop dispatch (vs 4)
- Larger queues
- Fused ops
- 72 out-of-order loads
- Four FP pipes that can handle 128-bit Fused Multiply Add, can be combined for 256-bit AVX, more than than (512) must be split
- "decoupled" branch predictor, can predict down a path
- TLB in the branch predictor (L0/L1/L2)
- Decode 4 instructions at once, can be fused
- Stack engine

- Dispatch 6 per cycle, each has 14 entry queue 4 ALU, 2 AGU (address generation)
 2 branch pipelines, one CRC, one IMUL
 2 branches per cycle, 8-wide retire
- Caches

64 entry L1 TLB, 1.5k entry L2 TLB

• Floating Point

2 level scheduling? 8-wide retire? Two AES units?

- SMT, one thread can be tagged as more important
- New instructions
 - \circ ADX extended add

- RDSEED for random number
- \circ SMAP supervisor access mode prevention
- \circ SHA1/SHA256 hash
- \circ CLFLUSHOPT flush
- \circ XSAVEC compact XSAVE
- CLZERO zero cache line (AMD only)
- PTE Coalescing (AMD only) merge 4k pages into 32k page
- "Pure Power" monitor power/temp/speed and adjust in real time
- "Precision Boost" can jump frequency in 25MHz

increments 1000 sensors per chip

- "SenseMi" Extended Frequency Range automated overclock
- Smart neural-network branch predictor?
- Smart neural-network prefetcher?
- SoC, PCIe lanes
- AM4 socket 1331 pins
- DDR4-2666 UDIMMs?
 - Registered vs Unregistered
 - Registered has a buffer on board. More expensive but

can have more DIMMs on a channel

- Registered may be slower (if it buffers for a cycle)
 RDIMM/UDIMM
- Did it win at the benchmarks?

Zen: An Energy Efficient High-Performance x86 Core

- By Singh, Schaefer, Rangarajan, Josh, Henrion, Schrieber, Rodriguez, Kosonocky, Naffziger, and Novak
- Zen replaces Excavator (high-end) and Jaguar (lowpower)
- 52% increase in IPC, reducing C_{AC} by 15% switching capacitance
- 12-layer telescoping metal stack, 56x top metal layer, metal-insulator-metal capacitors (MIMCap)

- Three V_t options
- CCX L3 is a cross-bar
- RVVD (real voltage) distributed to package. high efficiency volt regulator at 6.125mV increments LDO (low-drop off regulators) adjust with 2-3mV per step.
- Separate VDDM
- Cache: separate macros for tag, data, state. Parity is checked.
- Protected by DECTED (Double Error Correct/Triple error detect), not much more overhead than SECDED
- L3 cache is 16 mm2

- Level-shifting FIFO to handle the different voltage or clock frequencies between processors and L3
- Shadow tags.
- Lots of level converters
- L1 arrays use 8T macro
- Write-back more energy efficient
- WWL boost. Boosts on write if 1, not if 0
- Recombinant clock mesh, four level.
- Clock gating. Clock power saves 30% over jaguar and 25% over excavator
- Bulldozer, Piledriver, Steamroller, Excavator

- Fine-grained digital frequency synthesizer
- MIM decoupling capacitors (metal-insulator-metal)
- Silicon schmoo plot (what's a schmoo plot?)

