
ECE571: Advanced Microprocessor Design – Fall 2019
Homework 4

Due: Thursday 3 October 2019, 2:00pm

Create a document that contains the data and answers described in the sections below. A .pdf or .txt file is
preferred but I can accept MS Office or Libreoffice format if necessary.

1. Branch ratios on x86 Haswell-EP Machine
We will determine exactly how often branches happen in some benchmarks. In class I said traditionally
computer architects say that one in five instructions is a branch. We will find out if that is true.

For this section, log into the Haswell-EP machine just like in the previous homeworks.

(a) Run the bzip2 benchmark and measure instructions:u, branches:u, and
br_instr_retired.conditional:u

perf stat -e instructions:u,branches:u,br_inst_retired.conditional:u \

/opt/ece571/401.bzip2/bzip2 -k -f ./input.source

i. What are the total number of instructions, branches, and conditional branches?
ii. What is the ratio of branches to total instructions?

iii. What is the ratio of conditional branches to total instructions?

(b) Now do the same test with the equake_l benchmark (note that’s an L not a 1).

perf stat -e instructions:u,branches:u,br_inst_retired.conditional:u \

/opt/ece571/equake_l.specomp/equake_l < \

/opt/ece571/equake_l.specomp/inp.in

i. What are the total number of instructions, branches, and conditional branches?
ii. What is the ratio of branches to total instructions?

iii. What is the ratio of conditional branches to total instructions?

2. Branch miss rate on x86 Haswell Machine
Now we will calculate the branch miss rates for the benchmarks.

(a) For the bzip2 benchmark measure branches:u and branch-misses:u. Calculate the
branch miss rate branchmiss

branchtotal
∗ 100 (hint, you’ll notice perf does this for you when you measure

these instructions).

(b) Also calculate the branch miss rate for equake_l.



3. Speculative execution on x86 Haswell Machine
We learned that if a branch prediction fails, then the instructions down the wrong path have to be
kicked out of the pipeline. We can see how often this occurs by looking at the difference between
“executed” instructions (ones that made it to the execute stage) versus “retired” instructions (ones that
actually finished and were written back).

Haswell, unlike some other processors, has no “executed instructions” event but instead we can use
the µop (micro operation) events uops_retired.all:u and uops_executed.core:u.

(a) Find out what percentage of instructions were executed but not retired with bzip2.

(b) Find out what percentage of instructions were executed but not retired with equake_l.

4. Branch miss rate on x86 AMD Epyc Machine
Now log into an AMD EPYC machine and see how the branch miss rate compares.

From the haswell-ep machine, you can type ssh epyc and use the same password you use on
haswell-ep and it should let you log in.

(a) (Remember to first copy the input file to your local directory).
cp /opt/ece571/401.bzip2/input.source .

(b) For the bzip2 benchmark measure branches:u and branch-misses:u. Calculate the
branch miss rate branchmiss

branchtotal
∗ 100 (hint, you’ll notice perf does this for you when you measure

these instructions).

(c) Also calculate the branch miss rate for equake_l.

5. Branch ratios on an ARM64 System
For this section you will log into my NVIDIA Jetson-TX1 64-bit ARM board. To do this, when logged
into the Haswell-EP machine run:
ssh jetson
Your password should be the same as it is on the Haswell machine.

Gather the results using perf.

(a) Run the bzip2 benchmark and measure instructions and branches.
(Remember to first copy the input file to your local directory).
cp /opt/ece571/401.bzip2/input.source .
perf stat -e instructions:u,r10:u,r12:u \
/opt/ece571/401.bzip2/bzip2 -k -f ./input.source

r10:u maps to PC_BRANCH_MIS_PRED and r12:u maps to PC_BRANCH_PRED. So the
total number of branches is the sum of the two (mispredicted and predicted branches).
What are the total number of instructions and branches? What is the ratio of branches to total
instructions?

2



6. Branch miss rate on ARM64 System

(a) Calculate the branch miss rate for bzip2. You can do this based on the results you already
obtained in the previous question.

7. Short Answer Questions

(a) Does the branch to instruction ratio differ between equake and bzip2 on Haswell? What might
cause this? How could you test to see if that’s actually the cause?

(b) Does the branch to instruction ratio differ between bzip2 on the Haswell machine and bzip2 on
the ARM64 machine? Why might this be?

(c) How do the branch miss-prediction rates compare between bzip2 and equake on the Haswell
machine? What might be the source of any differences?

(d) How do the branch miss-prediction rates compare between bzip2 on Haswell and bzip2 on the
ARM64 machine? What different design decisions might have been made between the two
machines that affects these results?

(e) A raspberry-pi3 gives the following results for bzip2.

19510081072 instructions:u
1251257641 branches:u
220229064 branch-misses:u # 17.60% of all branches

29.475962689 seconds time elapsed

How do these compare to the ARM64 results? Why might the results differ from those on the
ARM64?

(f) How do the executed vs retired instruction rates differ between bzip2 and equake on the Haswell
machine? What implications might this have about the power efficiency of the two benchmarks?

(g) Imagine you wanted to write a benchmark to validate the branch prediction performance counters
on a system. What kind of short benchmark could you write that would give you a 50% miss-
predict rate?
Optionally write such a small example program, test it out, and report your results.

8. Submitting your work.

• Create the document containing the data as well as answers to the questions asked.

• Please make sure your name appears in the document.

• e-mail the file to me by the homework deadline.

3


