
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 1

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

3 September 2019

http://web.eece.maine.edu/~vweaver

Introduction

• Distribute and go over syllabus

http://web.eece.maine.edu/~vweaver/classes/ece571_2019f/ece571_2019f.pdf

• Note I had the course end time wrong on the syllabus,

and I’ve changed the office hours to not conflict with

ECE598.

1

http://web.eece.maine.edu/~vweaver/classes/ece571_2019f/ece571_2019f.pdf

Advanced Microprocessor Based Design

• *NOT* a direct continuation of ECE471 (Embedded

Systems) No blinking LEDs on embedded boards.

More of a mix of 471 and 473 ideas.

• Power and Energy concerns on modern systems.

• Will involve some computer architecture. Don’t worry if

not a Computer Engineer, will try to review completely.

• Will involve reading some papers.

• Will involve logging into Linux boxes and running

experiments.

2

Advanced Microprocessor Based Design

What is an Advanced Microprocessor?

• Desktop?

• Server?

• Supercomputer?

• Embedded?

• They are all converging.

3

Moore’s Law

• Memory Wall

• Power Wall

• Tiny tiny transistors

• More and More Cores

• Something’s Got To Give

4

What do people want out of a
Microprocessor?

• Performance?

• How do you analyze performance?

5

What is Performance?

• Getting results as quickly as possible?

• Getting correct results as quickly as possible?

• What about Budget?

• What about Development Time?

• What about Hardware Usage?

• What about Power Consumption?

• What about Security?

6

Motivation for HPC Optimization

HPC environments are expensive:

• Procurement costs: ∼$40 million

• Operational costs: ∼$5 million/year

• Electricity costs: 1 MW / year ∼$1 million

• Air Conditioning costs: ??

7

Know Your Limitation

• CPU Constrained

• Memory Constrained (Memory Wall)

• I/O Constrained

• Thermal Constrained

• Energy Constrained

8

Performance Optimization Cycle

Code

Develop

Usage /
Production

Modify / Tune

Analyze

Measure

Functionally Complete/
Correct Code

Correct/Optimized Code
Functionally Complete/

9

Wisdom from Knuth

“We should forget about small efficiencies, say about 97%

of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that

critical 3%. A good programmer will not be lulled into

complacency by such reasoning, he will be wise to look

carefully at the critical code; but only after that code has

been identified” — Donald Knuth

10

Amdahl’s Law

Time

Original

Speed up Blue 100x

Speed up Red 2x

11

Gathering Performance Info

• Aggregate counts (total instructions, total cycles, etc)

Actual measurements: perf, time

DBI measurements: valgrind, qemu

Simulators: gem5, simplescalar

• Sampled counts – periodically interrupt program, note

the instruction pointer. Can use info to statistically

determine which part of code where most time (or other

metric) is spent

hardware: perf

12

DBI: valgrind

compiler: gprof

• Tracing – gather a record of every event (instruction?)

that is executed. Can then replay this trace through

various tools for analysis.

13

Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

14

Software Tools for Performance Analysis

15

Simulators

• Architectural Simulators

• Can generate traces, profiles, or modeled metrics

• Slow, often 1000x or more slower

• Not real hardware, only a model

• Did I mention, slow?

• m5, gem5, simplescalar, etc

16

Dynamic Binary Instrumentation

• Pin, Valgrind (cachegrind), Qemu

• Still slow (10-100x slower)

• Can model things like cache behavior (can model

parameters other than system running on)

• Complicated fine-tuned instrumentation can be created

• Architecture availability – Pin (no longer ARM),

Valgrind, Qemu most architectures, hardest to use

17

Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

18

time

19

perf

20

