
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 2

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 September 2019

http://web.eece.maine.edu/~vweaver

Announcements

• I’ve added some optional readings to the website if you

want to review Computer Architecture a bit. You can

access the 2007 Edition of Patterson and Hennessy for

free via the UMaine Library website.

• HW#1 will be posted

• I am handing out account username/passwords for the

homework.

• Accounts: Log in to the haswell “haswell-ep” machine

for homework. Make sure you connect to port 2131.

1

ece571-1 names are a bit impersonal.

Use passwd to change your password.

You can use chfn to change your name as it appears in

w if you want.

Please use the accounts wisely

2

Evaluating Performance of Modern Systems

3

Benchmarks

• When measuring performance, need a reference workload

to compare

• Ideally reproducible, portable, easy to compile, relevant

• Benchmarks can be gamed

4

Selected Commonly Seen Benchmarks

• SPEC

◦ CPU 2000, CPU 2006, CPU 2017 – Commercial,

Single-threaded (floating point and integer)

◦ OMP – Commercial, Parallel

◦ jbb – Java

• HPC Challenge – Free. HPL (Linpack). High-

performance / Linear Algebra

• HPCG (conjugate gradient) new replacement for HPL

• PARSEC – Free, Multithreaded / CMP

5

• MiBench – Free, Embedded (2000)

• BioBench, BioParallel – Free, Bio/Data-Mining

• lmbench – Free, Operating System

• iobench – Disk I/O

• Stream – Memory

6

Measuring Performance

7

Using time

• For example
$ time xhpl

...

real 0m9.484s

user 0m29.150s

sys 0m7.440s

Real Time = Wall clock

User Time = Time used by program alone

Sys Time = Time used by OS

• When could Real be greater than User?

8

Other users/jobs on system.

When could User be greater than Real?

Multiple threads.

• Run multiple times and notice time changes

9

What if Time isn’t Enough?

10

What are Hardware Performance Counters?

• Registers on CPU that measure low-level system

performance

• Available on most modern CPUs; increasingly found on

GPUs, network devices, etc.

• Low overhead to read

11

Hardware Implementation of Counters

• Not much documentation available

• Jim Callister/Intel: “Confessions of a Performance

Monitor Hardware Designer” 2005, Workshop on

Hardware Performance Monitor Design

– Transistors free, wires not. Also design time,

validation, documentation, time to market. PMU has

tentacles “everywhere” bringing data back to center.

– Architect too much, lower performance, events don’t

12

map well to hardware. Architect too little.. software

design harder.

– Which events are important? Are cache misses

important if don’t hurt performance? (no stalls)

– Mapping events to signal difficult. On critical path.

Not enough wires. Combining signals hard if distance

between wires.

– Use logging. May miss events in “shadow” of another

event being logged. Use random behavior?

13

Learning About the Counters

• Number of counters varies from machine to machine

• Available events different for every vendor and every

generation

• Available documentation not very complete (Intel Vol3b,

AMD BKDG, ARM ARM/TRM)

14

Low-level interface

• on x86: MSRs

• ARM: CP15 system control register

15

Overflow

• overflows after hitting a threshold (often when wrapping,

most counters are between 32 and 44 bits wide)

• One use is to keep track of counters that may wrap

multiple times between reads

• If want to overflow earlier, init to a high value. So

0xc0000000 to overflow at 1 billion

16

Accuracy, Determinism vs Overcount

• Determinism – same count every time you run

• Overcount – an event counts more than the expected

amount

17

SW Sources of Non-Determinism

• Accessing changing values, such as time

• Pointer-value dependencies

18

Linux interface

• Abstract away.

• perf event open(). See the manpage.

• Very complicated system call.

• Most people use perf or PAPI rather than calling it

directly.

19

perf tool

A a tutorial on perf can be found here:

https://perf.wiki.kernel.org/index.php/Tutorial

20

perf list

Lists available events

List of pre-defined events (to be used in -e):

cpu-cycles OR cycles [Hardware event]

instructions [Hardware event]

cache-references [Hardware event]

cache-misses [Hardware event]

branch-instructions OR branches [Hardware event]

branch-misses [Hardware event]

bus-cycles [Hardware event]

cpu-clock [Software event]

task-clock [Software event]

page-faults OR faults [Software event]

minor-faults [Software event]

major-faults [Software event]

context-switches OR cs [Software event]

21

perf stat – Aggregate results

vince@arm:~/class/ece571$ perf stat ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

11585.144036 task-clock # 0.999 CPUs utilized

19 context-switches # 0.000 M/sec

0 CPU-migrations # 0.000 M/sec

1,633 page-faults # 0.000 M/sec

10,343,746,076 cycles # 0.893 GHz

5,031,717 stalled-cycles-frontend # 0.05% frontend cycles idle

9,521,135,479 stalled-cycles-backend # 92.05% backend cycles idle

1,176,286,814 instructions # 0.11 insns per cycle

8.09 stalled cycles per insn

137,835,961 branches # 11.898 M/sec

831,736 branch-misses # 0.60% of all branches

11.591796875 seconds time elapsed

22

perf stat – Specifying Events

vince@arm:~/class/ece571$ perf stat -e instructions,cycles ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,174,788,622 instructions # 0.14 insns per cycle

8,346,588,065 cycles # 0.000 GHz

12.394775391 seconds time elapsed

23

perf stat – Specifying Masks

:u is user, :k kernel

ARM Cortex A9 cannot specify this distinction (results

shown here are x86)

vince@arm:~/class/ece571$ perf stat -e instructions,instructions:u ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

950,526,051 instructions # 0.00 insns per cycle

945,661,967 instructions:u # 0.00 insns per cycle

1.052072277 seconds time elapsed

24

libpfm4 – Finding All Event Names
./showevtinfo

Supported PMU models:

[51, perf, "perf_events generic PMU"]

[65, arm_ac8, "ARM Cortex A8"]

[66, arm_ac9, "ARM Cortex A9"]

[75, arm_ac15, "ARM Cortex A15"]

Detected PMU models:

[51, perf, "perf_events generic PMU", 80 events, 1 max encoding, 0 counters, OS generic PMU]

[66, arm_ac9, "ARM Cortex A9", 57 events, 1 max encoding, 2 counters, core PMU]

Total events: 254 available, 137 supported

...

#-----------------------------

IDX : 138412068

PMU name : arm_ac9 (ARM Cortex A9)

Name : NEON_EXECUTED_INST

Equiv : None

Flags : None

Desc : NEON instructions going through register renaming stage (approximate)

Code : 0x74

#-----------------------------

....

25

libpfm4 – Finding Raw Event Values

./check_events NEON_EXECUTED_INST

Supported PMU models:

[51, perf, "perf_events generic PMU"]

[65, arm_ac8, "ARM Cortex A8"]

[66, arm_ac9, "ARM Cortex A9"]

[75, arm_ac15, "ARM Cortex A15"]

Detected PMU models:

[51, perf, "perf_events generic PMU"]

[66, arm_ac9, "ARM Cortex A9"]

Total events: 254 available, 137 supported

Requested Event: NEON_EXECUTED_INST

Actual Event: arm_ac9::NEON_EXECUTED_INST

PMU : ARM Cortex A9

IDX : 138412068

Codes : 0x74

26

perf – Using Raw Event Values

vince@arm:~/class/ece571$ perf stat -e r74 ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1 r74

11.303955078 seconds time elapsed

27

perf stat – multiplexing

perf stat -e instructions,instructions,branches,cycles,cycles ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,178,121,057 instructions # 0.12 insns per cycle [40.23%]

1,180,460,368 instructions # 0.12 insns per cycle [60.25%]

138,550,072 branches [80.09%]

9,999,614,616 cycles # 0.000 GHz [79.85%]

9,926,949,659 cycles # 0.000 GHz [20.17%]

11.214630127 seconds time elapsed

Note same event not same results, approximate because

an estimate. Percentage shown is percentage event was

active during run.

28

perf stat – all cores
vince@arm:~/class/ece571$ sudo perf stat -a ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

24089.660644 task-clock # 2.001 CPUs utilized [100.00%]

105 context-switches # 0.000 M/sec [100.00%]

1,641 page-faults # 0.000 M/sec

9,218,451,619 cycles # 0.383 GHz [100.00%]

9,707,195 stalled-cycles-frontend # 0.11% frontend cycles idle [100.00%]

8,393,095,067 stalled-cycles-backend # 91.05% backend cycles idle [100.00%]

1,193,164,945 instructions # 0.13 insns per cycle

7.03 stalled cycles per insn [100.00%]

139,913,572 branches # 5.808 M/sec [100.00%]

1,221,237 branch-misses # 0.87% of all branches

12.040527344 seconds time elapsed

Run on all cores of system even if your process not running
there. -a option. Need root permissions. (Why? Security)

29

perf record – sampling

vince@arm:~/class/ece571$ time ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

real0m10.747s

user0m10.688s

sys0m0.055s

vince@arm:~/class/ece571$ time perf record ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094

[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 0.454 MB perf.data (~19853 samples)]

real0m12.009s

user0m11.797s

sys0m0.203s

perf record creates perf.data, use -o to specify output

30

perf report – summary of recorded data

99.62% matrix_multiply matrix_multiply [.] naive_matrix_multiply

0.38% matrix_multiply [kernel.kallsyms].head.text [k] 0xc0046a54

0.00% matrix_multiply ld-2.13.so [.] _dl_relocate_object

0.00% matrix_multiply [kernel.kallsyms] [k] __do_softirq

Our benchmark is simple (only one function) so the profiled

results are not that exciting.

The [k] indicates that profile happened while the kernel

was running.

31

Similar ways to get Similar Results

• Valgrind/Callgrind

valgrind - -tool=callgrind BENCHMARK

then run callgrind annotate

Note Valgrind is probably around 50 times slower

• Use gprof

Compile your code with -pg

Run gprof BENCHMARK

32

perf annotate – show hotspots in assembly

0.00 : 845a: vldr d7, [pc, #124] ; 84d8 <naive_matrix_m

30.97 : 845e: adds r1, r4, r3

1.43 : 8460: add.w r3, r3, #4096 ; 0x1000

1.17 : 8464: adds r2, #8

1.36 : 8466: cmp.w r3, #2097152 ; 0x200000

2.97 : 846a: vldr d5, [r2]

2.62 : 846e: vldr d6, [r1]

2.78 : 8472: mov r9, r2

2.42 : 8474: vmla.f64 d7, d5, d6

53.81 : 8478: bne.n 845e <naive_matrix_multiply+0x72>

0.01 : 847a: adds r5, #1

The annotated results show a branch and an add instruction accounting for 83%

of profiles. Likely this is due to skid and the key instruction is the previous vmla.f64

floating point multiply instruction. The processor just isn’t able to stop at the exact

instruction when the interrupt comes in.

33

Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem, other Intel

processors have special events that can compensate for

this.

34

