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Announcements

• Homework #1 is due.

• Homework #2 will be posted. Reading on measurement

bias.
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Advanced CPUs
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Some sample code

i n t i ;

i n t x [ 1 2 8 ] ;

f o r ( i =0; i <128; i ++) {
x [ i ]=0;

}

How do you convert this to something the CPU

understands?
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Roughly Equivelent Assembler

mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to x array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; want to write 0 to x[i]

str r3 ,[r1 ,r2] ; x[i]=0

add r0 ,r0 ,#1 ; i++

cmp r0 ,#128 ; is i==128?

bne loop ; if not , keep looping

; Note: can do lots of code hoisting here

.bss

.lcomm x ,128*4
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An aside: how could you optimize this
code?

• Unroll the loop?

• Code hoisting (move the pointer load outside the loop)

• Use larger-sized writes (64-bit?)

• Use ARM barrel-shift addressing modes

• Crazy x86 instructions rep stosb
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Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs
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IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)
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How can we increase IPC?

• Simple CPU must have cycles as slow as slowest

instruction

• What if we break instructions up to take multiple cycles?

• What if we could overlap them?
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Pipelined CPUs

• 5-stage MIPS pipeline

• Have you ever used one? The first time I used UNIX:

MIPS R3000 in an SGI Personal Iris 4D/35

• Original Playstation

IF ID EX MEM WB
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Pipelined CPUs

• IF = Instruction Fetch, Update PC

Fetch 32-bit instruction from L1-cache

• ID = Decode, Fetch Register

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file
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Cycle 1

IF mov r0,#0

ID

EX

MEM

WB
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Cycle 2

IF ldr r1,=x

ID mov r0,#0

EX

MEM

WB
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Cycle 3

IF lsl r2,r0,#2

ID ldr r1,=x

EX mov r0,#0

MEM

WB
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Cycle 4

IF mov r3,#0

ID lsl r2,r0,#2

EX ldr r1,=x

MEM mov r0,#0

WB
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Cycle 5

IF str r3,[r1,r2]

ID mov r3,#0

EX lsl r2,r0,#2

MEM ldr r1,=x

WB mov r0,#0
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Benefits/Downside

• From 2-stage to Pentium 4 31-stage

• Latency higher (5 cycles) but average might be 1 cycle

• Why bother? Can you run the clock faster?
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Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?
EX add r1,r0,r0

MEM ldr r0,[r1]

WB mov r1,r3

• WAR – “anti” dependency – not a problem if commit in

order
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• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem
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Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example
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Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

IF ???

ID beq

EX cmp r0,r1
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Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class
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Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

EX add r1,r1,r0

MEM ldr r0,[r3]
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The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?
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Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,
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a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches
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Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?
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Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Types

◦ Static Multi-Issue – at compile time, VLIW

◦ Dynamic

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.
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EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue
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Register Renaming

• Loop unrolling

• If only a “name” dependence

• Architectural register doesn’t have to be updated until

written to

• Once written to it is essentially a separate register despite

the same name

ldr r1 ,[1024] ; ldr r100 ,[1024]

add r1 ,#5 ; add r100 ,#5

str r1 ,[2048] ; str r100 ,[2048]

ldr r1 ,[1025] ; ldr r101 ,[1025]

add r1 ,#5 ; add r101 ,#5

str r1 ,[2049] ; str r101 ,[2049]
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Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

Need to make sure loads/stores happen in order.

• Precise exceptions (skid?)

• What happens on exception? (interrupt, branch
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mispredict, etc)

• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?
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Perf Counters related to Stalls

• Front-end stalls – fetch, decode, icache misses

• Back-end stalls – memory accesses
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Instruction Level Parallelism

• Using super-scalar and/or OoO (Out of Order) execution

try to find parallelism within your serial code

• Chip companies want to speed up existing code. Why?

(it’s a pain to change, you might not have source, etc.)
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Other Ways to get better Parallelism
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SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon / A64 SIMD / “Scalabale Vector

Extensions” SVE
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SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product
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AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-XMM31
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Multi-core

• More’s law gives you lots of transistors. Hit limit of how

fast to make a single processor, so why not just put more

on the die?

• Exploits multi-programmed parallelism rather than

instruction-level parallelism
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Multi-threaded

• SMT (simultaneous multithreading), Intel Hyperthreading

• Hyrbid of multi-core and multi-pipeline

• Your pipelines might not always be full, especially if

waiting on memory

• Why not duplicate fetch/decode logic, and have two

programs execute at once on same set of pipelines.

• If one is idle/stalled, run instructions from other thread
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• Looks to OS as if you have two cores, but really just one

with two instruction dispatch stages

• Extra logic to make sure that pipelines used fairly, the

results get committed to the right register file, etc.
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CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory
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Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:
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◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

◦ Can actually slow down code (especially if both threads
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trying to use same functional units, also if both using

memory heavily as cache is often shared)

◦ Security? Information Leakage?

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing
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SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue
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Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy
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MESI

• Modified, Exclusive, Shared, Invalid
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