
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 September 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 is due.

• Homework #2 will be posted. Reading on measurement

bias.

1

Advanced CPUs

2

Some sample code

i n t i ;

i n t x [1 2 8] ;

f o r (i =0; i <128; i ++) {
x [i]=0;

}

How do you convert this to something the CPU

understands?

3

Roughly Equivelent Assembler

mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to x array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; want to write 0 to x[i]

str r3 ,[r1 ,r2] ; x[i]=0

add r0 ,r0 ,#1 ; i++

cmp r0 ,#128 ; is i==128?

bne loop ; if not , keep looping

; Note: can do lots of code hoisting here

.bss

.lcomm x ,128*4

4

An aside: how could you optimize this
code?

• Unroll the loop?

• Code hoisting (move the pointer load outside the loop)

• Use larger-sized writes (64-bit?)

• Use ARM barrel-shift addressing modes

• Crazy x86 instructions rep stosb

5

Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs

6

IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)

7

How can we increase IPC?

• Simple CPU must have cycles as slow as slowest

instruction

• What if we break instructions up to take multiple cycles?

• What if we could overlap them?

8

Pipelined CPUs

• 5-stage MIPS pipeline

• Have you ever used one? The first time I used UNIX:

MIPS R3000 in an SGI Personal Iris 4D/35

• Original Playstation

IF ID EX MEM WB

9

Pipelined CPUs

• IF = Instruction Fetch, Update PC

Fetch 32-bit instruction from L1-cache

• ID = Decode, Fetch Register

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

10

Cycle 1

IF mov r0,#0

ID

EX

MEM

WB

11

Cycle 2

IF ldr r1,=x

ID mov r0,#0

EX

MEM

WB

12

Cycle 3

IF lsl r2,r0,#2

ID ldr r1,=x

EX mov r0,#0

MEM

WB

13

Cycle 4

IF mov r3,#0

ID lsl r2,r0,#2

EX ldr r1,=x

MEM mov r0,#0

WB

14

Cycle 5

IF str r3,[r1,r2]

ID mov r3,#0

EX lsl r2,r0,#2

MEM ldr r1,=x

WB mov r0,#0

15

Benefits/Downside

• From 2-stage to Pentium 4 31-stage

• Latency higher (5 cycles) but average might be 1 cycle

• Why bother? Can you run the clock faster?

16

Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?
EX add r1,r0,r0

MEM ldr r0,[r1]

WB mov r1,r3

• WAR – “anti” dependency – not a problem if commit in

order

17

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

18

Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

19

Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

IF ???

ID beq

EX cmp r0,r1

20

Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

21

Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

EX add r1,r1,r0

MEM ldr r0,[r3]

22

The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

23

Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,

24

a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

25

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

26

Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Types

◦ Static Multi-Issue – at compile time, VLIW

◦ Dynamic

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

27

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

28

Register Renaming

• Loop unrolling

• If only a “name” dependence

• Architectural register doesn’t have to be updated until

written to

• Once written to it is essentially a separate register despite

the same name

ldr r1 ,[1024] ; ldr r100 ,[1024]

add r1 ,#5 ; add r100 ,#5

str r1 ,[2048] ; str r100 ,[2048]

ldr r1 ,[1025] ; ldr r101 ,[1025]

add r1 ,#5 ; add r101 ,#5

str r1 ,[2049] ; str r101 ,[2049]

29

Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

Need to make sure loads/stores happen in order.

• Precise exceptions (skid?)

• What happens on exception? (interrupt, branch

30

mispredict, etc)

• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?

31

Perf Counters related to Stalls

• Front-end stalls – fetch, decode, icache misses

• Back-end stalls – memory accesses

32

Instruction Level Parallelism

• Using super-scalar and/or OoO (Out of Order) execution

try to find parallelism within your serial code

• Chip companies want to speed up existing code. Why?

(it’s a pain to change, you might not have source, etc.)

33

Other Ways to get better Parallelism

34

SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon / A64 SIMD / “Scalabale Vector

Extensions” SVE

35

SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product

36

AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-XMM31

37

Multi-core

• More’s law gives you lots of transistors. Hit limit of how

fast to make a single processor, so why not just put more

on the die?

• Exploits multi-programmed parallelism rather than

instruction-level parallelism

38

Multi-threaded

• SMT (simultaneous multithreading), Intel Hyperthreading

• Hyrbid of multi-core and multi-pipeline

• Your pipelines might not always be full, especially if

waiting on memory

• Why not duplicate fetch/decode logic, and have two

programs execute at once on same set of pipelines.

• If one is idle/stalled, run instructions from other thread

39

• Looks to OS as if you have two cores, but really just one

with two instruction dispatch stages

• Extra logic to make sure that pipelines used fairly, the

results get committed to the right register file, etc.

40

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

41

Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

42

◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

◦ Can actually slow down code (especially if both threads

43

trying to use same functional units, also if both using

memory heavily as cache is often shared)

◦ Security? Information Leakage?

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

44

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

45

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

46

MESI

• Modified, Exclusive, Shared, Invalid

47

