ECE 571 — Advanced

Microprocessor-Based Design
Lecture 4

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

12 September 2019

http://web.eece.maine.edu/~vweaver

Announcements

e Homework #1 is due.

e Homework #2 will be posted. Reading on measurement
bias.

Advanced CPUs

Some sample code

Int 1
int x[128];

for(i=0;i<128;i++) {
} x[i]=0;

How do you convert this to something the CPU
understands?

Roughly Equivelent Assembler

mov rO0,#0 ; 1=0
loop:
ldr rl1,=x ; point rl to x array
1sl r2,r0,#2 ; r2=1i%*4
mov r3,#0 ; want to write O to x[il
str r3,[rl,r2] ; x[1]1=0
add rO0O,r0,#1 ; 1++
cmp r0O,#128 ; 1s 1i==1287
bne loop ; 1f not, keep looping

; Note: can do lots of code hoisting here

.bss
.lcomm x,128%*4

An aside: how could you optimize this
code?

e Unroll the loop?

e Code hoisting (move the pointer load outside the loop)
e Use larger-sized writes (64-bit?)

e Use ARM barrel-shift addressing modes

e Crazy x86 instructions rep stosb

Simple CPUs

e Ran one instruction at a time.
e Could take one or multiple cycles (IPC 1.0 or less)

e Example — single instruction take 1-5 cycles?

Memory _* Regs ‘Control

IPC Metric

e Instructions per Cycle
e Higher is better

e Inverse of CPI (cycles per instruction)

How can we increase IPC?

e Simple CPU must have cycles as slow as slowest
Instruction

e What if we break instructions up to take multiple cycles?

e What if we could overlap them?

Pipelined CPUs

e b-stage MIPS pipeline

e Have you ever used one? The first time | used UNIX:
MIPS R3000 in an SGI Personal Iris 4D /35

e Original Playstation

IF | ID | EX MEM|WB

Pipelined CPUs

e |[F = Instruction Fetch, Update PC

~etch 32-bit instruction from L1-cache

e |ID = Decode, Fetch Register

e EX = execute (ALU, maybe shifter, multiplier, divide)
Memory address calculated

e MEM = Memory — if memory had to be accessed,
happens now.

e WWB = register values written back to the register file

-y 10

IF

mov rO,#0

1D

EX

MEM

WB

Cycle 1

11

|F 1dr r1,=x
ID | mov rO,#0
EX
MEM
WB

Cycle 2

12

Cycle 3

|F 1sl r2,r0,#2
1D 1dr r1,=x
EX mov rO,#0
MEM
WB

13

Cycle 4

|F mov r3,#0
ID | 1sl r2,r0,#2
EX 1dr rl1,=x
MEM mov rO,#0
WB

14

Cycle 5

IF | str r3, [rl,r2]
1D mov r3,#0
EX 1sl r2,r0,#2
MEM 1dr rl1,=x
WB mov rO0,#0

15

Benefits/Downside

e From 2-stage to Pentium 4 31-stage
e Latency higher (5 cycles) but average might be 1 cycle

e Why bother? Can you run the clock faster?

/Y 16

Data Hazards

Happen because instructions might depend on results from
instructions ahead of them in the pipeline that haven't been
written back yet.

e RAW — “true” dependency — problem. Bypassing?
EX |add r1,r0,r0

MEM | 1dr rO, [r1]

WB |mov r1l,r3
e WAR — “anti” dependency — not a problem if commit in

order

-y 17

o WAW — “output” dependency — not a problem as long
as ordered
e RAR — not a problem

/Y 18

Structural Hazards

e CPU can't just provide. Not enough multipliers for
example

-y 19

Control Hazards

e How quickly can we know outcome of a branch

e Branch prediction? Branch delay slot?

IF | 7?77
ID | beq ___
EX | cmp r0,r1

Branch Prediction

e Predict (guess) if a branch is taken or not.

e What do we do if guess wrong? (have to have some way
to cancel and start over)

e Modern predictors can be very good, greater than 99%

e Designs are complex and could fill an entire class

-y 21

Memory Delay

e Memory/cache is slow

e Need to bubble / Memory Delay Slot

EX |add rl1,r1,r0
MEM | 1dr rO, [r3]

The Memory Wall

e \Wulf and McKee

e Processors getting faster more quickly than memory

e Processors can spend large amounts of time waiting for
memory to be available

e How do we hide this?

-y 23

Caches

e Basic idea is that you have small, faster memories that
are closer to the CPU and much faster

e Data from main memory is cached in these caches

e Data is automatically brought in as needed.
Also can be pre-fetched, either explicitly by program or
by the hardware guessing.

e \What are the downsides of pre-fetching?

e Modern systems often have multiple levels of cache.
Usually a small (32k or so each) L1 instruction and data,

-y o4

a larger (128k?) shared L2, then L3 and even L4.

e Modern systems also might share caches between
processors, more on that later
e Again, could teach a whole class on caches

-y 25

Exploiting Parallelism

e How can we take advantage of parallelism in the control
stream?

e Can we execute more than one instruction at a time?

/Y 26

Multi-Issue (Super-Scalar)

e Decode up to X instructions at a time, and if no
dependencies issue at same time.

o [ypes
o Static Multi-Issue — at compile time, VLIW
o Dynamic

e Dual issue example. Can have theoretical IPC of 2.0

e Can have unequal pipelines.

-y 21

Fetch

Decode

In§ lel__be
\ N

EX

EX

MEM

MEM

wB

wB

28

Register Renaming

e Loop unrolling

e If only a “name” dependence

e Architectural register doesn't have to be updated until
written to

e Once written to it is essentially a separate register despite
the same name

ldr r1,[1024] ; ldr r100,[1024]
add r1,#5 ; add r100 ,#5
str r1,[2048] i str r100, [2048]
ldr r1,[1025] ; ldr r101,[1025]
add r1,#5 ; add r101 ,#5
str r1,[2049] R r101, [2049]

/Y 29

Out-of-Order

e [ries to exploit instruction-level parallelism

e Instead of being stuck waiting for a resource to become
available for an instruction (cache, multiplier, etc) keep
executing instructions beyond as long as there are no
dependencies

e Need to insure that instructions commit in order
Need to make sure loads/stores happen in order.

e Precise exceptions (skid?)

e What happens on exception? (interrupt, branch

-y 30

mispredict, etc)
e Register Renaming
e Re-order buffer
e Speculative execution / Branch Prediction?

31

Perf Counters related to Stalls

e Front-end stalls — fetch, decode, icache misses

e Back-end stalls — memory accesses

32

Instruction Level Parallelism

e Using super-scalar and/or OoO (Out of Order) execution
try to find parallelism within your serial code

e Chip companies want to speed up existing code. Why?
(it's a pain to change, you might not have source, etc.)

/Y a3

Other Ways to get better Parallelism

34

SIMD / Vector Instructions

e x86: MMX/SSE/SSE2/AVX/AVX2
semi-related FMA

e MMX (mostly deprecated), = AMD’'s 3DNow!
(deprecated)

e PowerPC Altivec

e ARM: Neon / A64 SIMD / “Scalabale Vector
Extensions” SVE

-y 35

SSE / x86

e SSE (streaming SIMD): 128-bit registers XMMO -
XMMY7, can be used as 4 32-bit floats

e SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16
bit int, 16x8-bit int

e SSE3 : minor update, add dsp and others

e SSSE3 (the s is for supplemental): shuffle, horizontal
add

e SSE4 : popcnt, dot product

/Y 36

AVX / x86

e AVX (advanced vector extensions) — now 256 bits,
YMMO-YMM15 low bits are the XMM registers. Now
twice as many.

Also adds three operand instructions a=b-c

e AVX2 — 3 operand Fused-Multiply Add, more 256
Instructions

e AVX-512 — version used on Xeon Phis (knights landing)
and Skylake — now 512 bits, ZMMO0-XMM31

-y 37

Multi-core

e More's law gives you lots of transistors. Hit limit of how
fast to make a single processor, so why not just put more
on the die?

e Exploits multi-programmed parallelism rather than
instruction-level parallelism

/Y 38

Multi-threaded

e SMT (simultaneous multithreading), Intel Hyperthreading
e Hyrbid of multi-core and multi-pipeline

e Your pipelines might not always be full, especially if
walting on memory

e Why not duplicate fetch/decode logic, and have two
programs execute at once on same set of pipelines.

e If one is idle/stalled, run instructions from other thread

-y 39

e Looks to OS as if you have two cores, but really just one
with two instruction dispatch stages

e Extra logic to make sure that pipelines used fairly, the
results get committed to the right register file, etc.

VA A 4 10

CMP Diagram

CPU CPU CPU
0 1 N
1$/D$ I1$/D$| *° |I1$/D$

_—

Main Memory

Hardware Multi-Threading

e Idea Is to re-use a pipeline to execute multiple threads
at once, *without* fully replicating the entire CPU (so
less than multicore)

e You will have to replicate some things (program counter
for each, etc)

e Usually they appear to the CPU as full separate
processors even though they are not.

e Various ways to do this:

VA A 4 0

o Fine-grained — rotate threads every cycle

o Coarse-grained — rotate threads only if long latency
event happens (cache miss)

o Simultaneous — issue from any combination of threads,
to maximize use of pipeline (have to be superscalar)

e Why do this? Often on superscalar running only one
thread will leave parts idle, try to make use of these.

e Bad side effects?

o Can actually slow down code (especially if both threads

VA A 4 3

trying to use same functional units, also if both using
memory heavily as cache is often shared)
o Security? Information Leakage?

e Sometimes see it talked about as SMT (Simultaneous
Multithreading), Intel Hyperthreading is more or less the
same thing

-y ”

PC

Ins Queue

N\

SMT Diagram

Ins Queue Ins Queue

]]
N/

45

Cache Coherency

e How do you handle data being worked on by multiple
processors, each with own cache of main memory?

e Cache coherency protocols.
e Many and varied. MESI is a common one

e Directory vs Snoopy

-y 46

MESI

e Modified, Exclusive, Shared, Invalid

47

