
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 September 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Homeworks

◦ HW#1 graded

◦ HW#2 due Thursday (a reading)

• Optional Readings

◦ Pipeline Discussion: Computer Organization (RiscV)

/ Patterson and Hennesey

Section 4.11 “Real Stuff: The ARM Cortex-A53 and

Intel Core i7 Pipelines”

◦ Power/Energy: Computer Architecture / Hennesey

1

and Patterson

Section 1.5 “Trends in Power and Energy in Integrated

Circuits”

2

HW#1 Review

• bzip2 benchmark – what does it do?

• 19 billion instructions +/- 1000 or so

(this is test input maybe?)

• 13 billion cycles +/- 200 million (more variation that

last year)

• Didn’t ask, but roughly what’s the IPC? 1.5 or so

• Reversed: similar – HW2 will show you why I asked that
• Perf record: 6.4s,

57.16% bzip2 bzip2 [.] mainSort

17.57% bzip2 bzip2 [.] BZ2_compressBlock

3

11.90% bzip2 bzip2 [.] mainGtU.part.0

11.20% bzip2 bzip2 [.] handle_compress.isra.2

0.94% bzip2 bzip2 [.] BZ2_blockSort

• Valgrind, 1m18s == roughly 20 times slower?

11,291,448,187 blocksort.c:mainSort [/opt/ece571/401.bzip2]

3,381,835,437 compress.c:BZ2_compressBlock [/opt/ece571/401.bzip2]

2,138,813,059 bzlib.c:handle_compress.isra.2 [/opt/ece571/401.bzip2]

1,958,107,443 blocksort.c:mainGtU.part.0 [/opt/ece571/401.bzip2]

165,396,105 blocksort.c:BZ2_blockSort [/opt/ece571/401.bzip2]

• Gprof, also 4.3s
Different results, using function entry instead of exact
instruction count for sampling?
Also, using older gcc, newer versions it’s broken on
x86 64?

time seconds seconds calls s/call s/call name

4

70.77 2.59 2.59 53 0.05 0.05 mainSort

18.58 3.27 0.68 53 0.01 0.06 BZ2_compressBlock

8.20 3.57 0.30 12223 0.00 0.00 default_bzalloc

1.09 3.61 0.04 53 0.00 0.05 BZ2_blockSort

0.82 3.64 0.03 1856468 0.00 0.00 add_pair_to_block

• Skid instructions – mov is more likely than sub?
| n = ((Int32)block[ptr[unLo]+d]) - med;

1.17 | 5f0: mov (%r10),%edx

0.61 | lea (%rdx,%r13,1),%eax

1.11 | movzbl (%r15,%rax,1),%eax

2.70 | sub %r9d,%eax

| if (n == 0) {

1.08 | cmp $0x0,%eax

instructions:uppp
| n = ((Int32)block[ptr[unLo]+d]) - med;

0.45 | 5f0: mov (%r10),%edx

5

0.86 | lea (%rdx,%r13,1),%eax

3.53 | movzbl (%r15,%rax,1),%eax

1.25 | sub %r9d,%eax

| if (n == 0) {

1.15 | cmp $0x0,%eax

6

Real-World Pipelining Examples (from
P&H)

• ARM Cortex-A53 (found in Pi3)

◦ Eight-stage pipeline

◦ Dynamic multi-issue, two instructions

◦ Static in-order pipeline

◦ First 3 stags fetch two insns at a time, filling a 13-entry

instruction queue (branch predictors)

◦ Pipelines: one for load, one for store, two for ALU,

one multiply, one divide, one FP/SIMD (mul/div/sqrt)

7

one FP/SIMD for other

◦ What’s the peak possible IPC?

◦ Patterson and Hennesey report SPEC CPU 2006 INT

results. Best case is hmmer (search for gene sequence)

with IPC 1.03 (CPI 0.97). Worst is mcf (public

transit vehicle scheduling) IPC 0.12 (CPI 8.56). Mostly

memory constrained.

◦ In-order so depends a lot on compiler to get good

performance.

◦ 100mW (1 core at 1GHz)

• Intel Core i7 920 (Nehalem, 2008)

8

◦ Decodes CISC instructions to micro-ops

◦ Can issue up to 6 micro-ops per cycle

◦ 14 pipeline stages

◦ dynamic out-of-order with speculation

◦ register renaming, useful with speculation, as no need

to store snapshot to undo speculation, just mark the

speculated register results as invalid

◦ Instruction fetch, fetches 16 bytes. If wrong, 15 cycle

penalty

◦ Predecode instruction buffer – transform 16 bytes (x86

insns 1-15 bytes) into x86 insns

9

◦ 18-instruction instruction queue.

◦ Micro-op decode – three decoders handle decode of

instructions that map to 1 uop. One other handles

microcode engine that produces longer sequences, up

to 4uops a cycle.

◦ Can also do micro-op fusion (fuse two different insns

into one uops, such as cmp/branch)

◦ Micro-ops go ins a 28-entry uop buffer

Loop Stream Detector – if code is in tight loop (less

than 28 insns) it can execute from this buffer and not

need to fetch.

10

◦ Instruction issue. Reservation station. Up to six uops

can be issued

◦ Finished instructions go back to reservation station

and retirement unit, wait to update register state when

determined it is no longer speculative.

◦ Once instruction hits the head of the reorder buffer,

instruction commits and is removed from re-order

buffer

◦ Even though 6 uops can issue, only 4 can be finished

a turn? What’s the peak IPC? (4)

◦ Again, SPECCPU. Best is libquantum IPC=2.2 (CPI

11

0.44). Worst, again, mcf IPC=0.37 (CPI=2.67)

◦ Where do the wasted cycles go? Stalls? But also

mis-speculation where work is done and then thrown

out.

◦ 130 Watts (2.66GHz)

12

Power and Energy

13

Definitions and Units

People often say Power when they mean Energy

• Energy – Joules, kWH (3.6MJ), Therm (105.5MJ), 1

Ton TNT (4.2GJ), eV (1.6 × 10−19 J), BTU (1055 J),

horsepower-hour (2.68 MJ), calorie (4.184 J)

• Power – Energy/Time – Watts (1 J/s), Horsepower

(746W), Ton of Refrigeration (12,000 Btu/h)

• Volt-Amps (for A/C) – same units as Watts, but not

same thing

• Charge – mAh (batteries) – need V to convert to Energy

14

Power and Energy in a Computer System

Power Consumption Breakdown on a Modern Laptop, A.

Mahersi and V. Vardhan, PACS’04.

• Old, but hard to find thorough breakdowns like this

• Thinkpad Laptop, 1.3GHz Pentium M, 256M, 14” disp

• Oscilloscope, voltage probe and clamp-on current probe

• Measured V and Current. P=IIR. V=IR P=IV,

subtractive for things w/o wires

• Total System Power 14-30W

• Old: no LED backlight, no SDD, etc.

15

Modern results are from CUGR/REU student research.

Laptop (2004) Modern Server?

Hard Drive 0.5-2W 5W
LCD 1W

Backlight 1-4W
CPU 2-15W 60+W
GPU 1-5W 50+W

Memory 0.5-1.5W 1-5W
Power Supply 0.65W

Wireless 0.1 - 3W
CD-ROM 3-5W

USB (max 2.5W)
USB keyboard 0.04W

USB mouse 0.03W
USB flash 0.5W
USB wifi 0.5W

16

CPU Power and Energy

17

CMOS Transistors

Source Drain

Gate

N−MOSFET

Gate

Source Drain

n−well
p−substrate

P−MOSFET

18

CMOS Dynamic Power

• P = C∆V Vddαf

Charging and discharging capacitors big factor

(C∆V Vdd) from Vdd to ground

α is activity factor, transitions per clock cycle

F is frequency

• α often approximated as 1
2, ∆V Vdd as V 2

dd leading to

P ≈ 1
2CV

2
ddf

• Some pass-through loss (V momentarily shorted)

19

CMOS Dynamic Power Reduction

How can you reduce Dynamic Power?

• Reduce C – scaling

• Reduce Vdd – eventually hit transistor limit

• Reduce α (design level)

• Reduce f – makes processor slower

20

CMOS Static Power

• Leakage Current – bigger issue as scaling smaller.

Forecast at one point to be 20-50% of all chip power

before mitigations were taken.

• Various kinds of leakage (Substrate, Gate, etc)

• Linear with Voltage: Pstatic = IleakageVdd

21

Leakage Mitigation

• SOI – Silicon on Insulator (AMD, IBM but not Intel)

• High-k dielectric – instead of SO2 use some other

material for gate oxide (Hafnium)

• Transistor sizing – make only the critical transistors fast;

non-critical ones can be made slower and less leakage

prone

• Body-biasing

• Sleep transistors

22

