
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 October 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 will be posted

• Project will be coming up

1



Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

• Security

2



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

3



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

4



Page Lookup

Simplest would just be a table, with virtual page as index

and physical page as value.

5



Page Tables

• Collection of Page Table Entries (PTE)

• Some common components:

• ID of owner

• Virtual Page Number

• valid bit,

• location of page (memory, disk, etc)

• protection info (read only, etc)

• page is dirty, age (how recent updated, for LRU)

6



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

7



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

8



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

• What do you do if you have more than 32-bits?

◦ 64-bit x86 has 4-level page tables (256TBv/64TBp)

44/40-bits?

◦ Push by Intel for 5-level tables (128PBv/4PBp)

57 bits?

◦ What if you have unused bits? People use them,

causes problems later. AMD64 canonical addresses.

9



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.

10



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

11



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

12



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping

and TLB invalidated on all other processors

13



Page Table Caches

• Why walk the whole page table if likely you’ve walked

similar before

• Many processors have page table caches

• Translation Caching: Skip, Don’t Walk (the Page Table)

(ISCA’10)

14



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (intel only added ASID support

recently)

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux (security issue with Meltdown bug!)

15



What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

16



(by the hardware on x86)

• It no physical mapping in page table, then page fault

happens

17



What happens on a page fault

• The OS process structure has info on what memory

regions are valid and what should be there (text/data

comes from executable on disk, bss zeroed pages,

heap/stack might be auto-allocated zeroed pages)

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk.

18



◦ Demand paging.

◦ Needs to find room in physical memory.

◦ If no free space available, needs to kick something out.

Disk-backed (and not dirty) just discarded.

Disk-backed and dirty, written back.

◦ Memory can be paged to disk. Eventually can OOM.

◦ Memory is then loaded, or zeroed, and PTE updated.

◦ Can it be shared? (zero page)

• “invalid” – segfault

19



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write

20



Virtual Memory – Cache Concerns

21



Cache Issues

• Page table Entries are cached too

• What happens if more memory can fit in the cache than

can be covered by the TLB?

• If you have 128 TLB entries * 4kB you can cover 512kB

• If your cache is larger (say 1MB) then a simple walk

through the cache will run out of TLB entries, so page

lookups will happen (bringing page table data into cache)

and so you do not get maximal usefulness from the cache

22



• This has happened in various chips over the years

23



Physical Caches

Virtual Offset

TLB

Physical Offset

Tag IDX Off

Cache

24



Physical Caches, PIPT

• Location in cache based on physical address

• Can be slower, as need TLB lookup for each cache access

• No need to flush cache on context switch (or ever, really)

• No need to do TLB lookup on writeback

25



Virtual Caches

Virtual Offset

Cache

Tag IDX Off

Physical Offset

TLB

Writeback

26



Virtual Caches

• Location in cache based on virtual address

• Faster, as no need to do TLB lookup before access

• Will have to use TLB on miss (for fill) or when writing

back dirty addresses

• Cache might have extra bits to indicate permissions so

TLB doesn’t have to be checked on write

• Aliasing: Homonyms: Same virtual address (in multiple

processes) map to different physical page

◦ Must flush cache on context switch?

27



◦ How to avoid flushing? Have a process-id (ASID).

Can also implement sharing this way, by both processes

mapping to same virt address.

◦ Having kernel addresses high also avoids aliasing

• Aliasing: Synonyms: Phys address has two virtual

mappings

◦ Operating system might use page or cache coloring

• Operating system has to do more work.

28



VIPT

Virtual Offset

TLB

Physical

Cache

compare

tags

index

29



• Cache lookup and TLB lookup in parallel. Cache size +

associativity must be less than page size.

• If properly sized (so that the page offset fits completely

in the index) then index bits are the same for virt and

physical.

• If not sized, the extra index bits need to be stored in the

cache so they can be passed along with the tag when

doing a lookup

• No need to flush or track ASID on context switch

30



Combinations

• PIPT – older systems. Slow, as must be translated (go

through TLB) for every cache access (don’t know index

or tag until after lookup)

• VIVT – fast. Do not need to consult TLB to find data

in cache.

• VIPT – ARM L1/L2. Faster, cache line can be looked

up in parallel with TLB. Needs more tag bits.

• PIVT – theoretically possible, but useless. As slow as

31



PIPT but aliasing like VIVT.

32



Dealing with Limitations?

33



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

34



• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

35



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

36



• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

37



Haswell Virtual Memory

• L1 TLB (4-way associative)

◦ 64 4kB

◦ 32 2MB

◦ 4 1GB

• L2 TLB (1024 entry 8-way associative, combined 4kB

and 2M)

• DCache – 32kB/8-way/64B so VIPT possible

offset=6 bits, lines=64 (6-bits) so offset+index=12

(4096)

38



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• page table entries that support 4KB, 64KB, 1MB, and

16MB

• global and address space ID (no more TLB flush on

context switch)

• instruction micro-TLB (32 or 64 fully associative)

39



• data micro-TLB (32 fully associative)

• Unified main TLB, 2-way, 2x64 (128 total) on

pandaboard

• 4 lockable entries (why want to do that?)

• Supports hardware page table walks

40



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• Addresses can be 40bits virt / 32 physical

• First check FCSE – linear translation of bottom 32MB

to arbitrary block in physical memory (optional with

VMSAv7)

41



Cortex A9 TLB

• micro-TLB. 1 cycle access. needs to be flushed if ASID

changes

• fully-associative lockable 4 elements plus 2-way larger.

varying cycles access

42



Cortex A9 TLB Measurement

16 32 64 128 256 512

Matrix size

10000

100000

1000000

10000000

100000000

1000000000

10000000000

S
ta

ll
s

Dcache Stalls (r61)

TLB stalls (r83)

mTLB Stalls (r85)

L1 Cache Size

uTLB (32) Coverage

TLB (128) Coverage

L2 Cache

43


