
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 October 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 Prefetcher was due

• HW#7 will come out soon

• Project coming eventually

• There will be a midterm

1



HW#5 Review – Cache Sizing

• Haswell machine has a 44-bit physical address space,

32-kB L1 data cache, 8-way set associative, 64-bytes per

line.

◦ Offset = 6 bits

◦ Index = 215/23/26 = 26 = 6 bits

Why does having 12 bits of offset+index makes VIPT

caches easier (4096 bytes)

◦ 44-6-6=32-bit tag

2



HW#5 Review – Cache Example

• ld 0000 080f = line 0, tag 8 = hit

• ld ffff ffff = line f, tag ffffff = miss (cold)

• strb 0000 0810 = line 1 tag 8 = miss (unknown type),

LRU says throw out tag a (dirty) so writeback

NOTE: not necessarily a conflict miss. Yes there was a

conflict and something got kicked out, but the miss itself

is only a conflict if it had been in cache before (which

we don’t know)

• strb r0, 0xffffffff – hit. Set dirty bit

3



HW#5 Review – Bzip2 on Haswell-EP

• Haswel-EP memory parameters

◦ L1-icache 32k/8-way/64B

◦ L1-cache 32k/8-WAY/64B,4/5 cycles, writeback,

shared between threads

◦ L2 cache 256k/8-way/64B, 12 cycles, writeback

◦ L3 cache 8MB,64B, writeback

◦ (What doesn’t this say? replacement policy?

inclusive/exclusive? write-back?)

• Bzip: 11MB footprint

4



◦ L1-icache = 13k/19B = 0% miss rate

◦ L1-dcache-load = 311M/6.2B = 5% miss rate

◦ L2 = 208M/411M = 50% miss rate

◦ LLC 1k/139M = 0% miss rate

◦ Note, l1-dcache is loads. Issue with l1d-stores, in Linux

4.1 (17 Feb 2015) Kleen posted patch to separate SNB

evens from HSW in Linux kernel. So your results will

change based on kernel version. Annoying. Before

there was a l1d-store events

◦ Why do the results not match up? Shouldn’t L1-

misses be same as L2-accceses? Why would they not

5



match up? Bug in counters, not counting stores, bug

in counter selection, other things going on in system,

shared resources, chip errata, prefetching, etc. LLC

actually uses offcore-response events

◦ What can we tell about bzip2 behavior? Fits well in

icache. Why is L2 so bad? single threaded

6



HW#5 Review – equake l on Haswell-EP

• e-quake mem footprint 700MB

◦ L1-icache = 14M/1.4T = 0%

◦ L1-dcache = 31B/526B = 5.8%

◦ L2 = 22B/52B = 42%

◦ LLC = 2B/14B=14%

7



HW#5 Review – bzip2 on Jetson

• Jetson TX-1 4 GB LPDDR4

◦ L1 i-cache=48 kB, 3-way

◦ l1 d-cache=32 kB, 2-way

◦ l2 = 2 MB, 16-way (big?) 512 kB (little?)

• Results

◦ L1-icache = 184k/10B = 0%

◦ L1-dcache-load = 254M/6B = 4%

◦ L1-dcache-store = 56M/2.2B = 2.5%

◦ L2-dcache-load = 28M/330M = 8.5%

8



◦ L2-dcache-store = 21M/308M = 6.8%

• Why did we have to use raw events? Proper Cortex-A57

event support not added until Linux 4.4. Need to update

the kernel, tricky on Jetson.

9



Virtual Memory – Cache Concerns

10



Cache Issues

• Page table Entries are cached too

• What happens if more memory can fit in the cache than

can be covered by the TLB?

• If you have 128 TLB entries * 4kB you can cover 512kB

• If your cache is larger (say 1MB) then a simple walk

through the cache will run out of TLB entries, so page

lookups will happen (bringing page table data into cache)

and so you do not get maximal usefulness from the cache

• This has happened in various chips over the years

11



Physical Caches

Virtual Offset

TLB

Physical Offset

Tag IDX Off

Cache

12



Physical Caches, PIPT

• Location in cache based on physical address

• Can be slower, as need TLB lookup for each cache access

• No need to flush cache on context switch (or ever, really)

• No need to do TLB lookup on writeback

13



Virtual Caches

Virtual Offset

Cache

Tag IDX Off

Physical Offset

TLB

Writeback

14



Virtual Caches

• Location in cache based on virtual address

• Faster, as no need to do TLB lookup before access

• Will have to use TLB on miss (for fill) or when writing

back dirty addresses

• Cache might have extra bits to indicate permissions so

TLB doesn’t have to be checked on write

• Aliasing: Homonyms: Same virtual address (in multiple

processes) map to different physical page

◦ Must flush cache on context switch?

15



◦ How to avoid flushing? Have a process-id (ASID).

Can also implement sharing this way, by both processes

mapping to same virt address.

◦ Having kernel addresses high also avoids aliasing

• Aliasing: Synonyms: Phys address has two virtual

mappings

◦ Operating system might use page or cache coloring

• Operating system has to do more work.

16



VIPT

Virtual Offset

TLB

Physical

Cache

compare

tags

index

17



• Cache lookup and TLB lookup in parallel. Cache size +

associativity must be less than page size.

• If properly sized (so that the page offset fits completely

in the index) then index bits are the same for virt and

physical.

• If not sized, the extra index bits need to be stored in the

cache so they can be passed along with the tag when

doing a lookup

• No need to flush or track ASID on context switch

18



Combinations

• PIPT – older systems. Slow, as must be translated (go

through TLB) for every cache access (don’t know index

or tag until after lookup)

• VIVT – fast. Do not need to consult TLB to find data

in cache.

• VIPT – ARM L1/L2. Faster, cache line can be looked

up in parallel with TLB. Needs more tag bits.

• PIVT – theoretically possible, but useless. As slow as

PIPT but aliasing like VIVT.

19



Other Virtual Memory Issues

20



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

21



• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

22



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

23



• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

• On x86 also useful because it provided more bits in PTEs

for things like non-execute permissions

24



Virtual Machines – Shadow Page Tables

• Virtualization, provide another layer between hardware

and OS

• Hypervisor lets you run multiple copies of OS, each

thinking they have full control of hardware

• Internal OS have page tables, but so does the real

hardware

• Various implementations to try to merge together to

25



avoid the double layer of abstraction when handling

page tables

26



Quick run-through, the path of a load

• OoO, load buffer, etc

• VIPT. So on access it looks up the physical tag in TLB

while reading out the tags from each way with the index.

Also keep in mind MESI is going on at this level.

• If tag from TLB matches a tag from cache, hit! Good!

Cache hit!

• If tag in TLB but not in cache, cache miss.

• If tag not in TLB, TLB miss. Won’t know if cache hit

until later.

27



• Now let the hardware walk the page tables.

• If hardware finds the page, great! Return it back up to

the TLB

• If hardware can’t find the page, time to get the Operating

System involved. Page fault.

• Hardware has a list of what should be in memory where

(from the executable). Typically these are demand-

loaded

◦ Text/code – read from disk

◦ Data – read from disk

◦ BSS – allocate zeros

28



◦ Stack – if near top growing down, auto-grow

◦ Heap – similar to stack

◦ Shared page– could already be in memory (shared lib?)

Just need to point to it.

◦ Zeros – just have one page of zeros you can point to

◦ Paged out to disk – have offset in page file, need to

load it

• Time to bring in the page! Need to find room in Physical

RAM. If no room, need to make room. Possibly paging

out to disk (this is what LRU/dirty bits are used for).

What kind of issues come up when low on RAM and

29



constantly paging same pages in and out (thrashing?)

• Page now in physical RAM, time to go backwards.

Update the page table

• Fill in the TLB. Return to memory.

• If page fault occurred, usually re-execute the instruction.

• Issues

◦ Could you have race where you re-execute it and the

page had gotten swapped out again?

◦ Can we page out the page tables? What can go wrong

there? Double faults? How many nested page faults

can you handle?

30



Quick run-through, the path of a store

• Is it much different?

31



Real World Examples

32



Haswell Virtual Memory

• ITLB

◦ 4kB: 128 entry, 4-way, dynamic between Hyperthreads

◦ 2MB/4MB: 8, fully assoc, duplicated ht

• DTLB

◦ 4kB: 64-entry, 4-way, fixed partition

◦ 2MB/4MB: 32 entry, 4-way

◦ 1GB: 4-entry, 4-way

• STLB (second level)

◦ 4kB/2MB: 1024 entry, 8-way

33



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• page table entries that support 4KB, 64KB, 1MB, and

16MB

• global and address space ID (no more TLB flush on

context switch)

• instruction micro-TLB (32 or 64 fully associative)

34



• data micro-TLB (32 fully associative)

• Unified main TLB, 2-way, 2x64 (128 total) on

pandaboard

• 4 lockable entries (why want to do that?)

• Supports hardware page table walks

35



Cortex A9 MMU

• Virtual Memory System Architecture version 7

(VMSAv7)

• Addresses can be 40bits virt / 32 physical

• First check FCSE – linear translation of bottom 32MB

to arbitrary block in physical memory (optional with

VMSAv7)

36



Cortex A9 TLB

• micro-TLB. 1 cycle access. needs to be flushed if ASID

changes

• fully-associative lockable 4 elements plus 2-way larger.

varying cycles access

37



Cortex A9 TLB Measurement

16 32 64 128 256 512

Matrix size

10000

100000

1000000

10000000

100000000

1000000000

10000000000

S
ta

ll
s

Dcache Stalls (r61)

TLB stalls (r83)

mTLB Stalls (r85)

L1 Cache Size

uTLB (32) Coverage

TLB (128) Coverage

L2 Cache

38


