ECE 571 – Advanced Microprocessor-Based Design Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

29 November 2019

Announcements

- HW7 was assigned
- Midterm next class!
- Useful readings:
 - "A performance and power comparison of modern highspeed DRAM arch" from MEMSYS 2018
 - "DRAM Refresh Mechanisms, Penalties, and Tradeoffs" Bhati, Chang, Chishti, Lu and Jacob. IEEE transactions on Computers, 2016.

- Note that ECE598 (NASA class) with be MW 2-3:15
- Note from last class modern motherboards have 100MHz clock and use PLL to multiply the frequency

Midterm Review

Closed book/laptop/phone but can have front of one 8.5x11 piece of paper worth of notes if you want.

1. Performance/Benchmarking

- Be familiar with the general idea of performance counters and interpreting perf results.
- Benchmark choice: it should match what you plan to do with the computer.
- Know a little about the difference between integer benchmarks and floating point (integer have

more random/ unpredictable behavior with lots of conditionals; floating point are often regular looped strides over large arrays or data sets)

Be familiar with concept of skid.

2. Power

- Know the CMOS Power equation
- Energy, Energy Delay, Energy Delay Squared
- Idle Power Question

3. Branch Prediction

Static vs Dynamic

- 2-bit up/down counter
- Looking at some simple C constructs say expected branch predict rate

4. Cache

- Given some parameters (size, way, blocksize, addr space) be able to calculate number of bits in tag, index, and offset.
- Know why caches are used, that they exploit temporal and spatial locality, and know the tradeoffs (speed vs nondeterminism)

- Be at least familiar with the types of cache misses (cold, conflict, capacity)
- Know difference between writeback and write-through
- Be able to work a few simple steps in a cache example (like in HW#5)

5. Prefetch

- Why have prefetchers?
- Common prefetch patterns?

6. Virtual Memory

General concept of VM

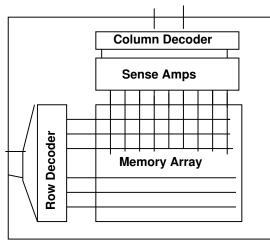
- Benefits of VM?
 - Memory Protection, each program has own address space, allows having more memory than physical memory, demand paging, copy-on-write for fork, less memory fragmentation, etc.
- Why is TLB behavior important?
 - Depending on cache config:
 - worst case: (VIVT) every memory access looked up in TLB best case: (PIPT) every cache miss looked up in TLB

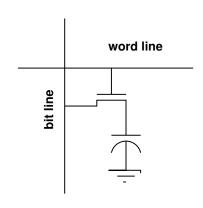
Static RAM (SRAM) Review

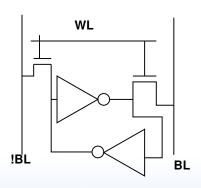
- Used on chip: caches, registers, etc. Made in same process as CPU
- 6 transistors (or 4 plus hard-to make resistors with high static power)
- Cross-coupled inverters
 - For read, precharge both bitlines. Raise wordline.
 - Lots of capacitance so hard to swing whole way, so sense amp which amplified the small voltage shift
 - o For write, set bitline and not-bitline, set wordline.

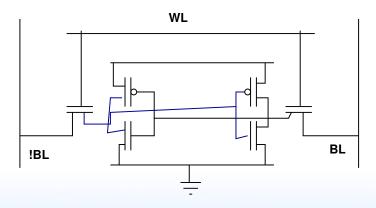
Overpowers inverters

- Clocked or no, clocked saves power
- Bitlines might be braided to avoid noise

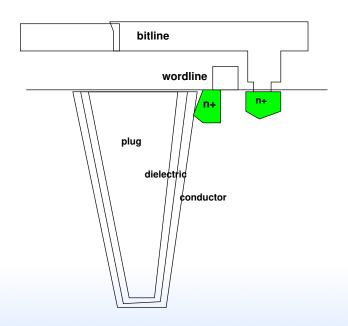

Why not have large SRAM


- SRAM is low power at low frequencies but takes more at high frequencies
- It is harder to make large SRAMs with long wires
- It is a lot more expensive while less dense (Also DRAM benefits from the huge volume of chips made)
- Leakage for large data structures
- Price: 8MB for \$163


Diagram


DRAM

SRAM


DRAM

- Single transistor/capacitor pair. (can improve behavior with more transistors, but then less dense)
- In 90nm process, 30fF capacitor, leakage in transistor 1fA. Can hold charge from milliseconds to seconds.
- DRAMs gradually lose charge, need to be refreshed.
- Need to be conservative. Refresh every 32 or 64ms (if 8192 rows, then 64ms/8192 is 7.8us)
- DRAM read is destructive, always have to write back

Low Level

- Planar (old)
- Trench Capacitors (transistors above)
- Stacked Capacitors (transistors below)

SIMMs/DIMMS

- How many chips on DIMM? 8? 9?
 9 usually means ECC/parity
- Chips x1 x4 x8 bits, how many get output at a time.
 Grouped together called a "bank"
- Banks can mask latency, sort of like pipelining. If takes 10ns to respond, interleave the request.
- DIMM can have independent "ranks" (1 or 2 per DIMM), each with banks, each with arrays

- Layout, multiple mem controllers, each with multiple channels, each with ranks, banks, arrays
- Has SPD "serial presence detect" chip that holds RAM timings and info. Controlled by smbus (i2c)
- SODIMM smaller form factor for laptops "small outline"

Refresh

- Need to read out each row, then write it back. every 32 to 64ms
- Old days; the CPU had to do this. Slow Digression: what the Apple II does
- Newer chips have "auto refresh"

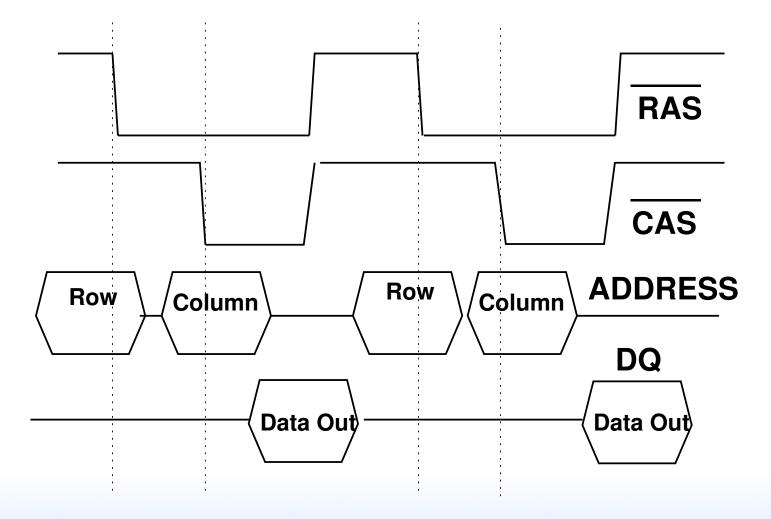
Low-Level Memory Bus

- JEDEC-style. address/command bus, data bus, chip select
- Row address sends to decoder, activates transistor
- Transistor turns on and is discharged down the column rows to the sense amplifier which amplifies
- The sense amplifier is first "pre-charged" to a value halfway between 0 and 1. When the transistors are enabled the very small voltage swing is amplified.

 This goes to column mux, where only the bits we care about are taken through

Memory Access

- CPU wants value at address (cache miss?)
- Passed to memory controller
- Memory controller breaks into rank, bank, and row/column
- Proper bitlines are pre-charged
- ullet Row is activated, then \overline{RAS} , row address strobe, is signaled, which sends all the bits in a row to the sense



amp. can take tens of ns.

- Then the desired column bits are read. The \overline{CAS} column address strobe sent.
- Again takes tens of ns, then passes back to memory controller.
- Unlike SRAM, have separate CAS and RAS? Why?
 Original DRAM had low pincount.
- Also a clock signal goes along. If it drives the device it's synchronous (SDRAM) otherwise asynchronous

Async DRAM Timing Diagram

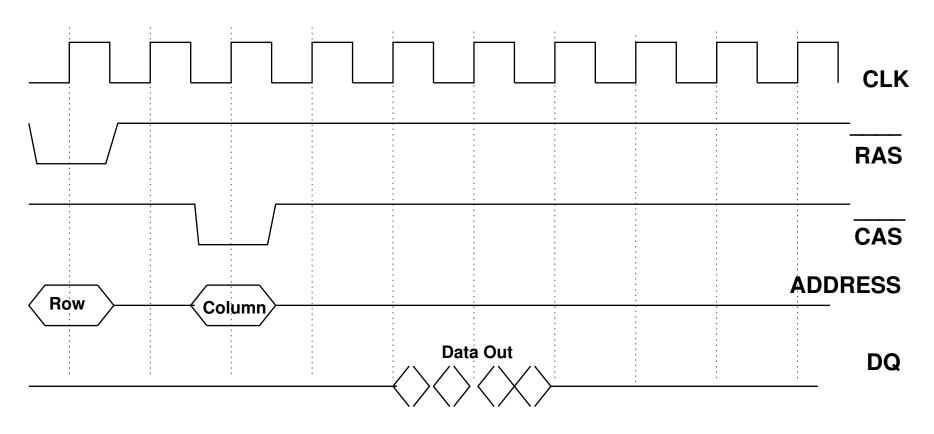
Memory Controller

- Formerly on the northbridge
- Now usually on same die as CPU

Advances in Memory Technology

In general the actual bit array stays same, only interface changes up.

- Clocked
- Asynchronous
- Fast page mode (FPM) row can remain active across multiple CAS.
- Extended Data Out (EDO) like FPM, but buffer



"caches" a whole page of output if the CAS value the same.

- Burst Extended Data Out (BEDO) has a counter and automatically will return consecutive values from a page
- Synchronous (SDRAM) drives internal circuitry from clock rather than outside RAS and CAS lines. Previously the commands could happen at any time. Less skew.

DDR Timing Diagram

Historical Memory Types

- SDRAM − 3.3V
- DDR transfer and both rising and falling edge of clock
 2.5V. Adds DLL to keep clocks in sync (but burns power)
- DDR2 runs internal bus half the speed of data bus.
 4 data transfers per external clock. memory clock rate
 * 2 (for bus clock multiplier) * 2 (for dual rate) * 64 (number of bits transferred) / 8 (number of bits/byte)
 so at 100MHz, gives transfer rate of 3200MB/s. not pin

compatible with DDR3. 1.8 or 2.5V

- DDR3 internal doubles again. Up to 6400MB/s, up to 8gigabit dimms. 1.5V or 1.35V
- DDR3L low voltage, 1.35V (not same as LPDDR3)
- DDR4 recently released. 1.2V, 1600 to 3200MHz. 2133MT/s, parity on command/address busses, crc on data busses.
- DDR4L − 1.05V

- DDR5 just announced
- GDDR2 graphics card, but actually halfway between DDR and DDR2 technology wise
- GDDR3 like DDR2 with a few other features. lower voltage, higher frequency, signal to clear bits
- GDDR4 based on DDR3, replaced quickly by GDDR5
- GDDR5 based on DDR3
- LPDDR2/LPDDR3/LPDDR4 as with GDDR, not

necessarily a lot in common with DDR2/DDR3/DDR4 – NOTE TO FUTURE write up something on how it works

More obscure Memory Types

- RAMBUS RDRAM narrow bus, fewer pins, could in theory drive faster. Almost like network packets. Only one byte at time, 9 pins?
- FB-DIMM from intel. Mem controller chip on each dimm. High power. Requires heat sink? Point to point.
 If multiple DIMMs, have to be routed through each controller in a row.
- VCDRAM/ESDRAM adds SRAM cache to the DRAM

• 1T-SRAM – DRAM in an SRAM-compatible package, optimized for speed

Memory Latencies, Labeling

- DDR400 = 3200MB/s max, so PC3200
- DDR2-800 = 6400MB/s max, so PC2-6400
- DDR2 5-5-5-15
 - \circ C_L CAS latency
 - $\circ T_{RCD}$ row address to column address delay
 - \circ T_{RP} row precharge time
 - $\circ T_{RAS}$ row active time
 - o CMD (optional), command time
- DDR3 7-7-7-20 (DDR3-1066) and 8-8-8-24 (DDR3-1333).

Memory Parameters

You might be able to set this in BIOS

- Burst mode select row, column, then send consecutive addresses. Same initial latency to setup but lower average latency.
- CAS latency how many cycles it takes to return data after CAS.
- Dual channel two channels (two 64-bit channels to memory). Require having DIMMs in pairs

