
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 23

Vince Weaver

http://web.eece.maine.edu/ vweaver

vincent.weaver@maine.edu

26 November 2019



Announcements

• Project Status – remember to include related work

• Related: never pay for an academic paper

◦ No one involved with the paper ever sees that money

◦ Also the UMaine library pays a lot of money to

subscribe to the papers, so access them through the

library website

• Homeworks – will be graded

1



Virtualization

• Running multiple copies of operating system on one

machine

• Often designed to be transparent – operating systems

do not realize they are not running on bare metal

2



Virtualization – Why do it?

• Server consolidation – take many lightly loaded servers,

combine on one machine (reduce maintenance costs)

• Security/Sandboxing – hackers can hack an OS but not

whole machine

• Reliability – one OS image goes down, doesn’t take rest

with it

• Virtual memory images can be easily copied and

brought up on various systems (hypervisor hides hardware

differences)

3



Virtualization – Downsides

4



Virtualization Types

• Slower/overhead

• Security – if someone breaks out and into the VM can

compromise them all

• Security – timing attacks

• Reliability – one machine dying can take out many OS

images

Different levels of abstraction.

• Simulation – perfectly emulate hardware/CPU – slow

5



• Full-virtualization – fully simulate hardware, OS generally

does not realize is being virtualized

• Paravirtualization – full hardware not simulated, virtual

I/O interfaces provided

guest oses have to be aware of this (but less hardware

emulation slowdown)

• Containers – operating system userspace separation

(processes see independent OS setup, filesystem, etc)

but still talking to one OS image via syscalls

6



Terms

• Guest

• Host

• VM (virtual machine)

• Hypervisor

7



Are you running on real hardware?

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• SMM mode (system maintenance mode)

8



Simulation

• Simulation

9



Full Virtualization

• Virtualize the CPU, some sort of simulation of hardware

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware

10



Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): the VM must control all

resources

11



• efficiency (performance): most instructions must execute

without intervention

12



Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

13



Intel VT-x and AMD-V

• See A Comparison of Software and Hardware Techniques

for x86 Virtualization by Adams and Agesen, ASPLOS

2006.

• VMware managed full virt on 32-bit x86 using dynamic

binary instrumentation (to handle trapping privileged

instructions) and segmentation (to handle memory)

• De-privledging: any attempt to read privileged info traps

and can be intercepted

• Shadow structures: need copies of things that can’t be

14



intercepted at CPU level, like page-tables. Need to trap

on access to these. True vs hidden page faults.

• x86 issues (assume protected mode)

◦ visible privileged state (see privileged mode when read

CS register; CPL (privilege level) lower 2 bits)

◦ Lack of traps when privileged instructions run at user-

level.

◦ popf (pop flags) changes both ALU and system flags

(IF, enable interrupts). When run non-privileged

ignores this, doesn’t trap.

• x86-64 mostly removed segmentation (At least at first)

15



so old ways wouldn’t work

• Intel VT-x and AMD-V

◦ Adds virtual machine code block

◦ Intel: extended page tables (nested page tables)

◦ VMCS shadowing: allow nested VMs

16



Second Level Address Translation (SLAT)

• HW alternate to SW managed shadow page tables

• Virtual memory host serves as Phys memory of guest, so

need to translate pages twice on every page fault, etc

17



Other things

• KSM – kernel same-page mapping, de-duplicate

(consolidate) identical pages in system to save RAM

• Balloon driver, to balance RAM across VMs only as

needed

• GPU virtualization

• IOMMU

• Interrupt virtualization

18



KVM

• Requires CPU with hardware virtualization extensions

• Kernel acts as hypervisor

• /dev/kvm interface

◦ Set up VM and add memory, provide firmware

◦ Set up I/O traps and handlers

◦ Map video display

• Hardware and I/O emulation often handled by Qemu

19



Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces

20



Containers

• ;Login article

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM

21



Traditional HPC

AB

↓

↓
C

22



Cloud-based HPC

AB

↓

↓
C

23



Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC

24



Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments

�o1 Time Loses All Meaning¤O1

25



Simplified Model of Time Measurement

Hardware

Operating System

Application

Time

26



Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer

27



Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1

28



So What Can We Do?

Hope we have exclusive access and measure wall-clock time.

29



Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup

30



Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?

31



Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.

32



Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)

33



PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters

34



Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports

35



The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest

36



PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);

37



Timing Behavior on Bare Metal

0 2 4 6 8 10
Other CPU-hogging Apps Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Actual Core2 Hardware

PAPI_get_real_usec()

PAPI_get_virt_usec()

38



Timing Behavior on Virtualized System

0 2 4 6 8 10
Other CPU-hogging VMs Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Same Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

39



Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component

40



Timing Adjusted with Stealtime

0 2 4 6 8 10
Other CPU-hogging jobs Running

0

50000

100000

T
im

e
 (

u
s
)

Time to run MMM, Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

System Stealtime

PAPI_get_virt_usec() adjusted for stealtime

41



Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component

42



Infiniband DirectPath Comparison

43



VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime

44



Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway

45


