
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 24

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 December 2019

http://web.eece.maine.edu/~vweaver

Project/HW Reminder

• Lecture delayed due to snow

• Homework #11 was posted/due

1

HW#7, TLB

• Why not more pagefaults? Kernel stat wrong? Pre-

faulting by kernel?

Odd major faults always 0

/usr/bin/time -v

major only means goes to disk, in our case we are

allocating memory and filling it so no going to disk

So why not paging of executable in? Well the first time

you run it after boot there should be, but after that

likely in disk cache so not need to go to disk.

2

• Note a TLB miss does not always equal a page fault

• Number of pages to cover 24MB, true that in theory

also needs some 2nd-level pages too (hard to know how

many without knowing where in memory things are)

3

Graphics and Video Cards

4

Old CRT Days

• Electron gun

• Horizontal Blank, Vertical Blank

• Atari 2600 – only enough RAM to do one scanline at a

time

• Apple II – video on alternate cycles, refresh RAM for

free

• Bandwidth key issue. SNES / NES, tiles. Double

buffering vs only updating during refresh

5

Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay

6

Modern Graphics Cards

• Can draw a lot of power

• 2D (optional these days)

• 3D

• Video decoders

7

Interface

• Integrated or stand alone

• Integrated traditionally less capable, but changing. Share

Memory bandwidth, take memory.

8

GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

9

Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

higher frequency)

10

Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus in x86 systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150W and more

Can transfer 8GT/s (giga-transfers) a second

In general PCIe is limiting factor to getting data to GPU.

11

Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p

12

or 1920x1200 at 60Hz. TMDS differential signaling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD

13

LCD Displays

• Crystals twist in presence of electric field

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT

14

• Circuitry inside to scale image and other post-processing

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires no

power to hold state

15

Interfaces

• OpenGL – SGI

• DirectX – Microsoft

• For consumer grade, driven by gaming

16

GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?

17

Other Accelerator Options

• XeonPhi – came out of the larabee design (effort to do a

GPU powered by x86 chips). Large array of x86 chips(p5

class on older models, atom on newer) on PCIe card.

Sort of like a plug-in mini cluster. Runs Linux, can ssh

into the boards over PCIe. Benefit: can use existing x86

programming tools and knowledge.

• FPGA – can have FPGA accelerator. Only worthwhile

if you don’t plan to reprogram it much as time delay in

reprogramming. Also requires special compiler support

18

(OpenMP?)

• ASIC – can have hard-coded custom hardware for

acceleration. Expensive. Found in BitCoin mining?

• DSPs – can be used as accelerators

19

Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

20

Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

21

Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

22

GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

23

GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers

24

Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

25

Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

26

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

27

GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

28

Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

29

Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now

30

Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

31

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)

32

Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

33

Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

34

– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

35

Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

36

Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

37

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

38

CUDA Programming

• Since 2007

• Use nvcc to compile

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

39

• global parameters to function – means pass to

CUDA compiler

• cudaMalloc() to allocate memory and pointers that can

be passed in

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• cudaFree() at the end

• Can get block number with blockIdx.x and thread index

40

with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

41

CUDA Programming

• See the NVIDIA “CUDA C Programming Guide”

• Compute Unified Device Architecture

• From CUDA C Programming guide from NVIDIA

• CUDA introduced in 2006

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

42

• CUDA C extends C, define C functions ”kernels” that

are executed N times in parallel by N CUDA threads

43

CUDA Coding

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

44

code that can launch the GPU code

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Only subset of C/C++ supported in the device code

45

CUDA Hardware

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads that execute

independently from each other.

• Manages/Schedules/Executes threads in groups of 32

parallel threads (warps) (weaving terminology) (no

relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

46

each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

47

CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly

g l o b a l v o i d VecAdd (f l o a t ∗A, f l o a t ∗B, f l o a t ∗C) {
i n t i = t h r e a d I d x . x ;

C [i]=A [i]+B [i] ;

}

48

i n t main (i n t argc , c h a r ∗∗ a r g v) {
. . . .

/∗ I n v o k e N t h r e a d s ∗/

VecAdd<<<1,N>>>(A, B, C) ;

}

• threadIdx is 3-component vector, can be seen as 1, 2 or

3 dimensional block of threads (thread block)

• Much like our sobel code, can look as 1D (just x), 2D,

(thread iD is ((y*xsize)+x) or (z*xsize*ysize)+y*xsize+x

• Weird syntax for doing 2 or 3d.

49

g l o b a l v o i d MatAdd (f l o a t A [N] [N] , f l o a t B [N] [N] , f l o a t C [N] [N])

{
i n t i=t h r e a d I d x . x ;

i n t j=t h r e a d I d x . y ;

C [i] [j]=A [i] [j]+B [i] [j] ;

}

i n t numBlocks =1;

dim3 t h r e a d s P e r B l o c k (N,N) ;

MatAdd<<<numBlocks , t h r e a d s P e r B l o c k >>>(A, B, C) ;

50

• Each block made up of the threads. Can have multiple

levels of blocks too, can get block number with blockIdx

• Thread blocks operate independently, in any order. That

way can be scheduled across arbitrary number of cores

(depends how fancy your GPU is)

51

CUDA Memory

• Per-thread private local memory

• Shared memory visible to whole block (lifetime of block)

• Global memory

• also constant and texture spaces. Have special rules.

Texture can do some filtering and stuff

• Global, constant, and texture persistent across kernel

launches by same app.

52

More Coding

• No explicit initialization, done automatically first time

you do something (keep in mind if timing)

• Global Memory: linear or arrays.

◦ Arrays are textures

◦ Linear arrays are allocated with cudaMalloc(),

cudaFree()

◦ To transfer use cudaMemcpy()

◦ Also can be allocated cudaMallocPitch() cudaMalloc3D()

for allignment reasons

53

◦ Access by symbol (?)

• Shared memory, shared . Faster than Global also

device

Manually break your problem into smaller sizes

54

Misc

• Can lock host memory with cudaHostAlloc(). Pinned,

can’t be paged out. Can load store while kernel running

if case. Only so much available. Can be marked

writecombining. Not cached. So slow for host to read

(should only write) but speeds up PCI transaction.

55

Async Concurrent Execution

• Instead of serial/parallel/serial/parallel model

• Want to have CUDA running and host at same time, or

with mem transfers at same time

◦ Concurrent host/device: calls are async and return to

host before device done

◦ Concurrent kernel execution: newer devices can run

multiple kernels at once. Problem if use lots of memory

◦ Overlap of Data Transfer and Kernel execution

◦ Streams: sequence of commands that execute in order,

56

but can be interleaved with other streams

complicated way to set them up. Synchronization and

callbacks

57

Events

• Can create performance events to monitor timing

• PAPI can read out performance counters on some boards

• Often it’s for a full synchronous stream, can’t get values

mid-operation

• NVML can measure power and temp on some boards?

58

Multi-device system

• Can switch between active device

• More advanced systems can access each others device

memory

59

Other features

• Unified virtual address space (64 bit machines)

• Interprocess communication

• Error checking

60

Texture Memory

• Complex

61

3D Interop

• Can make results go to an OpenGL or Direct3D buffer

• Can then use CUDA results in your graphics program

62

Code Example

#i n c l u d e <s t d i o . h>

#d e f i n e N 10

g l o b a l v o i d add (i n t ∗a , i n t ∗b , i n t ∗c) {
i n t t i d=b l o c k I d x . x ;

i f (t i d<N) {
c [t i d]=a [t i d]+b [t i d] ;

63

}
}

i n t main (i n t arc , c h a r ∗∗ a r g v) {

i n t a [N] , b [N] , c [N] ;

i n t ∗ dev a ,∗ dev b ,∗ d e v c ;

i n t i ;

/∗ A l l o c a t e memory on GPU ∗/

64

cudaMal loc ((v o i d ∗∗)& dev a ,N∗ s i z e o f (i n t)) ;

cudaMal loc ((v o i d ∗∗)& dev b ,N∗ s i z e o f (i n t)) ;

cudaMal loc ((v o i d ∗∗)& dev c ,N∗ s i z e o f (i n t)) ;

/∗ F i l l the h o s t a r r a y s w i t h v a l u e s ∗/

f o r (i =0; i<N; i ++) {
a [i]=− i ;

b [i]= i ∗ i ;

}

cudaMemcpy (dev a , a ,N∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;

65

cudaMemcpy (dev b , b ,N∗ s i z e o f (i n t) , cudaMemcpyHostToDevice) ;

add<<<N,1>>>(dev a , dev b , d e v c) ;

cudaMemcpy (c , dev c ,N∗ s i z e o f (i n t) , cudaMemcpyDeviceToHost) ;

/∗ r e s u l t s ∗/

f o r (i =0; i<N; i ++) {
p r i n t f (”%d+%d=%d\n ” , a [i] , b [i] , c [i]) ;

}

66

cudaFree (d e v a) ;

cudaFree (dev b) ;

cudaFree (d e v c) ;

r e t u r n 0 ;

}

67

