ECE 571 – Advanced Microprocessor-Based Design Lecture 25

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

10 December 2019

Announcements

- Don't forget projects, presentations on Thursday
- Final writeup due last day of exams (20th)

NVIDIA GPUs

Tesla	2006	90-40nm	
Fermi	2010	40nm/28nm	
Kepler	2012	28nm	
Maxwell	2014	28nm	
Pascal/Volta	2016	16nm/14nm	
Turing	2018	12nm	
Ampere	2020	7nm	

Homework Reading #1

NVIDIA Reveals Next-Gen Turing GPU Architecture: NVIDIA Doubles-Down on Ray Tracing, GDDR6, & More

https://www.anandtech.com/show/13214/nvidia-reveals-next-gen-turing-gpu-architecture

August 2018 – by Ryan Smith

Background

- Turing Architecture
- Unveiled at SIGGRAPH 2018

Also Read

NVIDIA TURING GPU ARCHITECTURE whitepaper

Whitepaper

How does Real Hardware

- Biggest impediment was memory size/bandwidth
- 3D Polygon Rendering/Rasterizing vertices together make polygons, all shapes broken up into smaller amount of polygons. Textures applied, lighting calculated based on normal to polygon.
- Scanline Rendering no framebuffer, triangles processed and what line they start/stop are stored. One line drawn at a time
- Tiled rendering, similar, but tiles rather than lines

as small as 16x16 or 32x32 (used on various boards, including Videocore IV on Pi)

• 3D Polygon rendering has problems. Lots of things, such as shadows, relections, and transparency, are effectively faked with hacks.

Ray Casting vs Ray Tracing

- Complex, not really good definitions
- Ray casting in general is when you cast rays from eye into scene, but stop when hit first object.
- Ray tracing cast rays from eye into scene, but reflect/refract off of objects until hit light source

Ray Tracing Hardware

- Anythnig other than simple ray-casting requires recursion (Each time you hit an object) as well as random-access to the entire 3d-space
- NVIDIA RTX
- Hybrid raytracing traditional casting+rasterization used for visibility, raytracing for shadows
- Only continue tracing rays of surface has more than threshold of reflectability

Turing Streaming Multiprocessor (SM)

- Each SM has 64 INT32 and 64 FP32 cores, partitioned into 4 blocks
- Integer units separated out instead of being part of FPU Can run int and fp in parallel
- "Unified Cache Architecture" Texture, shared memory, load caching in one unit (2x as fast?)
- Variable Rate Shading different parts of screen with different details

Tensor Cores

- Deep Learning accelerator
- Matrix calculations
- INT8 and INT4 modes

Shading Advancements

- Mesh shading
- Variable Rate Shading (VRS) spend less time shading if distant, or fast moving, if you're not looking at it (Foveated Rendering, VR)
- Texture-space shading
- Multi-view Rendering (MVR) (two scenes slightly offset, for 3d)

NGX – Neural Graphics Acceleration

- Deep learning graphics framework
- Use AI to speed up rendering
 - Deep Learning Super-Sampling (DLSS)
 - Inpainting (fix missing pixels)
 - Al Slow-mo
 - \circ Al Super res/zoom

Hybrid Rendering and Neural Networking

- Ray-tracing processor
 - 10-billion giga-rays a second
 - 25x performance over Pascal
- Enhanced tensor cores
 Use AI to denoise to improve ray-trace performance
- More precisions
 - \circ Volta had FP16
 - \circ Now INT8 and INT4

GDDR6 Support

- 16Gbps per pin
 - 2x GDDR5
 - \circ 40% more than GDDR5X
- Low voltage 1.35V
- Higher bandwidth per pin than HBM2 but HBM much wider.
- Samsung, clamshell mode?

Caches, Memory

- Larger L2 cache (6MB)
- Render Output Unit (ROP)
- Memory compression

NVLink, VirtualLink, 8K HVEC

- NVLink
- VirtualLink
 - VR can drive vrtual reality display
 - USB-C alternative?
 - \circ 15W+ power
 - ∘ 10Gbps USB3.1
 - 4-lanes of display port
- HVEC hardware video encoding 8k support, 25% lower bitrate

Performance

- RTX 8000 \$6000 limit 5 per customer
 - High end with 4608 CUDA cores, 576 tensor cores
 - 48GB ECC
 - \circ 295W total board power
 - PCI express 3.0x16
 - DP 1.4 (4), VirtualLink (1)
 - \circ HB Bridge to connect two cards
- 500 Trillian tensor ops/second
- NVidia quoting specs on INT4 (4x faster than FP16)

- CUDA cores, 16 TFLOPS
- **75**4*mm*²

RDNA Whitepaper – Eras

- R100 pre 2000 Fixed Function
- R200-R500 2001-2007 Simple VS/PS Shaders
- R600 2008-2011 Terascale, Unified Shaders with VLIW
- Southern Islands 2012-2018 GCN (Graphics Core Next)
- RDNA Navi

AMD GPUs

Caribbean Islands			Fiji
Sea Islands			
Volcanic Islands			
Polaris RX400	2016	28/14nm	
Polaris / RX500	2017	14/12nm	
Vega / RX5000	2017	14/7nm	GCN
Navi	2019	7nm	RDNA

HW Reading #2

AMD Announces Radeon RX 5700 XT & RX 5700: The Next Gen of AMD Video Cards Starts on July 7th At \$449/\$379

by Ryan Smith, 10 June 2019

https://www.anandtech.com/show/14528/amd-announces-radeon-rx-5700-xt-rx-5700-series

RDNA Whitepaper

- Backwards compat with GCN
- seven basic instruction types: scalar compute, scalar memory, vector compute, vector memory, branches, export, and messages
- GCN had 64-wide wavefront SIMD
- Navi down to 32-wide
- Infinity Fabric
- PCle4
- Virtualizable, can share GPU between operating systems

- Asynchronous Compute Tunneling compute and graphics workloads need to be co-scheduled. Which has priority? This allows some compute tasks to be suspended if higher priority comes in
- Sub-vector mode, split calculations in two, take same number of cycles but can free registers faster
- Can issue instructions every cycle, instead of round-robin (4x faster)
- Accelerated mixed-precision dot product (for machine learning)
- Separate execution pipeline for double-precision data

- Transcendental units
- Crossbars and swizzles
- L0/L1/L2 caches
- Vector caches, interact with texture unit
- Local data share vs global data share, exports
- At 7nm, wires are really long and transmitting data takes time
- Output, support, compression VSC
- Video decoding
- Audio decoding?
- Contrast Adaptice Sharpening

 Radeon RX 5700 XT: FP32 9.75TFLOP/s, 251mm², 225W

New RDNA Architecture

- Excrutiating detail at a later time? Not yet?
- Navi codename
- Massive redesign
- RX 5700 XT \$400
 - ∘ 2560 processors (40CPUs)
 - \circ 1.9GHz boost clock
 - 8GB 14Gbps GDDR6
 - **7nm**
 - 225W

- "Game Clock" how fast will run during average game
- 9TFLOPs 32-bit FP operation
- Data color compression
- New Cache Hierarchy

Architecture and Features

- Drop size of wavefront from 64 to 32 threads wide
- SIMD up from 16-slots to 32-slots
- Primitive Shader break difference between vertex and geometry shaders?
- PCIe 4.0 (works well with Zen2)
- Display port display stream compression

