ECE571: Advanced Microprocessor Design – Homework 6 Fall 2020

Due: Friday 17 October 2020, 12:00pm

Create a document that contains the data and answers described in the sections below. A .pdf or .txt file is preferred but I can accept MS Office or Libreoffice format if necessary.

1. Bzip2 prefetch behavior on the x86 Haswell-EP Machine

For this section, log into the Haswell-EP machine just like in previous homeworks.

Run the bzip2 benchmark on the Haswell machine.

(a) Measure (in one command) bzip using the following events: 12_rqsts.all_demand_references which is total L2 cache accesses, 12_rqsts.demand_data_rd_miss which is total demand L2 cache misses, and 12_rqsts.all_pf which is total prefetches into the L2 cache.

```
perf stat -e 12_rqsts.all_demand_references:u,\
12_rqsts.demand_data_rd_miss:u,\
12_rqsts.all_pf:u \
/opt/ece571/401.bzip2/bzip2 -k -f ./input.source
```

Note, if the program finishes instantly with an error message, be sure you have input.source in your current directory. You can recopy it with

```
cp /opt/ece571/401.bzip2/input.source .
```

Calculate the L2 cache miss rate from the first two results (misses/total), the third event is just informational, it in theory tracks total number of prefetches.

Note all 3 values, the rate, and total time.

2. Software Prefetching and bzip2 on Haswell-EP

(a) Re-run the previous prefetch results on Haswell, but instead of running bzip2 run bzip2.swprefetch which was compiled with -fprefetch-loop-arrays which enables sw prefetch instructions.

Record the miss rate and total time.

```
perf stat -e 12_rqsts.all_demand_references:u,\
12_rqsts.demand_data_rd_miss:u,\
12_rqsts.all_pf:u \
/opt/ece571/401.bzip2/bzip2.swprefetch -k -f ./input.source
```

3. equake_l prefetch behavior on the x86 Haswell-EP Machine

Run equake_1:

```
(a) perf stat -e 12_rqsts.all_demand_references:u,\
    12_rqsts.demand_data_rd_miss:u,\
    12_rqsts.all_pf:u \
    /opt/ece571/equake_l.specomp/equake_l < \
    /opt/ece571/equake_l.specomp/inp.in</pre>
```

Calculate the L2 cache miss rate from the first two results, also note the total time.

4. equake_l software prefetch behavior on the x86 Haswell-EP Machine

Run equake_1 with software prefetch enabled:

```
(a) perf stat -e l2_rqsts.all_demand_references:u,\
    l2_rqsts.demand_data_rd_miss:u,\
    l2_rqsts.all_pf:u \
    /opt/ece571/equake_l.specomp/equake_l.swprefetch < \
    /opt/ece571/equake_l.specomp/inp.in</pre>
```

Calculate the L2 cache miss rate from the first two results, also note the total time.

5. Hardware Prefetch Disabled

It is possible to disable hardware prefetch on modern Intel processors.

See.

 $https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors \\ for details.$

It requires root permissions, so I have done the measurements for you, with the results summarized in the three tables below.

Full Cache Results with Hardware Prefetch Enabled

Z GII COOLIG ILOSGIOS WIGH ILOS GWOOD I I GIOCOLI ZILOSGIOG						
benchmark	L1-miss	L2-miss	L3-miss	runtime		
bzip2	5%	%	0.001%	4s		
bzip2.swprefetch	5%	%	0.001%	4s		
equake_l	6%	%	15%	35s		
equake_l.swprefetch	6%	%	15%	35s		

Full Cache Results with Hardware Prefetch Disabled

benchmark	L1-miss	L2-miss	L3-miss	runtime
bzip2	5%	45%	0.001%	4s
bzip2.swprefetch	5%	45%	0.001%	4s
equake_l	6%	60%	95%	57s
equake_l.swprefetch	6%	60%	95%	56s

L2 extended results, HW Prefetch Disabled, (on regular Haswell, Haswell-EP is similar)

benchmark	L2-total	L2-miss	L2-prefetches	time
bzip2	294,105,194	127,429,015	174,122	3.28
bzip2.swprefetch	293,392,001	128,848,679	197,188	3.25
equake_l	27,182,307,882	18,938,356,292	8,988,780	137.5
equake_l.swprefetch	28,005,813,185	19,127,383,783	8,390,162	137.4

6. Short Answer Questions

- (a) Did enabling software prefetch help on bzip2? (i.e. compare the results in question 1 and question 2?)
- (b) Did enabling software prefetch help on equake_1? (i.e. compare the results in question 3 and question 4?)
- (c) How did turning off the prefetcher affect the bzip2 results (i.e. question 1 vs question 5?)
- (d) How did turning off the prefetcher affect the equake_l results (i.e. question 3 vs question 5?)
- (e) Based on the results in question 5, what level of cache is the hardware prefetcher fetching into?
- (f) With the hardware prefetcher disabled, did enabling software prefetch help at all? (question 5)
- (g) Why do you think the software prefetch performance is so underwhelming?

7. Submitting your work.

- Create the document containing the data as well as answers to the questions asked.
- Please make sure your name appears in the document.
- e-mail the file to me by the homework deadline.