
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 2

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 September 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Lecture notes are posted to the course website.

1

Review: What is Performance?

• Getting results as quickly as possible?

• Getting correct results as quickly as possible?

• What about Budget?

• What about Development Time?

• What about Hardware Usage?

• What about Power Consumption?

• What about Security?

2

Motivation for HPC Optimization

HPC environments are expensive:

• Procurement costs: ∼$40 million

• Operational costs: ∼$5 million/year

• Electricity costs: 1 MW / year ∼$1 million

• Air Conditioning costs: ??

3

Know Your Limitation

• CPU Constrained

• Memory Constrained (Memory Wall)

• I/O Constrained

• Thermal Constrained

• Energy Constrained

4

Performance Optimization Cycle

Code

Develop

Usage /
Production

Modify / Tune

Analyze

Measure

Functionally Complete/
Correct Code

Correct/Optimized Code
Functionally Complete/

5

Wisdom from Knuth

“We should forget about small efficiencies, say about 97%

of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that

critical 3%. A good programmer will not be lulled into

complacency by such reasoning, he will be wise to look

carefully at the critical code; but only after that code has

been identified” — Donald Knuth

6

Amdahl’s Law

Time

Original

Speed up Blue 100x

Speed up Red 2x

7

Software Tools for Performance Analysis

8

Simulators

• Architectural Simulators

• Can generate traces, profiles, or modeled metrics

• Slow, often 1000x or more slower

• Not real hardware, only a model

• Did I mention, slow?

• m5, gem5, simplescalar, etc

9

Dynamic Binary Instrumentation

• Pin, Valgrind (cachegrind), Qemu

• Still slow (10-100x slower)

• Can model things like cache behavior (can model

parameters other than system running on)

• Complicated fine-tuned instrumentation can be created

• Architecture availability – Pin (no longer ARM),

Valgrind, Qemu most architectures, hardest to use

10

Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

11

Gathering Performance Info – Aggregate
Counts

• Aggregate counts (total instructions, total cycles, etc)

• Actual measurements: perf, time

• DBI measurements: valgrind, qemu

• Simulators: gem5, simplescalar

12

Gathering Performance Info – Profiling

• Insert calls on entry to function (or basic block) to track

how much time spent in each

• Do you need source code?

• Manually add?

• DBI: valgrind

• compiler: gprof

13

Gathering Performance Info – Sampled
Counts

• Sampled counts – periodically interrupt program, note

the instruction pointer

• Can use info to statistically determine which part of code

where most time (or other metric) is spent

• hardware: perf

• DBI: valgrind

14

Gathering Performance Info – Tracing

• Tracing – gather a record of every event (instruction?)

that is executed. Can then replay this trace through

various tools for analysis.

• Downside: huge trace files (gigabytes+)

15

Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

16

Evaluating Performance of Modern Systems

17

Benchmarks

• When measuring performance, need a reference workload

to compare

• Ideally reproducible, portable, easy to compile, relevant

• Benchmarks can be gamed

18

Selected Commonly Seen Benchmarks

• SPEC

◦ CPU 2000, CPU 2006, CPU 2017 – Commercial,

Single-threaded (floating point and integer)

◦ OMP – Commercial, Parallel

◦ jbb – Java

• HPC Challenge – Free. HPL (Linpack). High-

performance / Linear Algebra

• HPCG (conjugate gradient) new replacement for HPL

• PARSEC – Free, Multithreaded / CMP

19

• MiBench – Free, Embedded (2000)

• BioBench, BioParallel – Free, Bio/Data-Mining

• lmbench – Free, Operating System

• iobench – Disk I/O

• Stream – Memory

20

