
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 September 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 was due

• Homework #2 will be posted. A reading on measurement

bias, with some short answer questions.

1

Simple Computer

2

6502

1MHz

Reset

D0
...

D7

A0
...

A15
Memory

 32k

Decoder

CE

R/W

ROM

8K

CE

T
ri

−
S

ta
te

T
ri

−
S

ta
te

CPU

I/O
Keypad

Display
Serial

IRQ R/W

3

• Clock crystal keeps everything in sync (can you run

without clock? Yes, asynchronous chips, harder to

design)

• Reset button to restart things, start PC at known address

• Address bus, addresses are put out. 16-bit address space,

16 pins, 216 (64k) addresses.

This is used to address instructions *and* data

Usually tri-state buffers are used to protect CPU pins

and also allow multiple devices to drive address bus if

needed

• Data bus: bi-directional (read/write)

4

• To read memory: CPU puts address on address bus,

says want to read. Decoder logic enables proper device.

Device decodes address, finds 8-bit value, puts it on data

bus. CPU latches the result and does whatever with it

(puts in instruction buffer, puts in register)

• To write memory: CPU puts data on data bus, address

on address bus, sets write signal.

• Reading from ROM much like RAM, only you can’t write

it

• Memory-mapped I/O, the device is enabled by decoder

when address matches. Puts data on data bus just like

5

RAM would.

If I/O wants CPU attention it can pull an IRQ line to

request interrupt. Otherwise CPU must poll.

• I show a 6502 CPU in example. Simple CPU, found in

Apple II, Commodore, NES, many others. Designed in

part by UMaine alum Chuck Peddle. Not often used

for quick designs like shown because the clock circuitry

was quite complex (but better than say the 8080 which

needed all kinds of crazy voltages).

6

How Are Modern Systems Different?

• A lot of the I/O and memory controller pushed onto chip

• No Address/Data busses anymore.

• Memory is almost like a network/packet thing where

addresses and data sent out serially

• Same with expansion, like USB or PCIe

7

More Complex Early computers

• Original IBM PC

• Additional helper chips to 8086. Keyboard controller,

interrupt controller, DMA controller (did memory

refresh, etc), programmable interval timer

• ISA system bus, more or less just exposed CPU

address/data bus to slot connectors

• Dynamic memory

• 8086 had separate I/O port space

• Memory too slow, had wait states

8

• 8086 was full 16-bit CPU. PC uses 8088 which had only

8-bit data bus (but same ISA!). Also 24-bit address bus,

played games to address properly.

9

Modern Systems Even More Complex

• PCI bus

• North/South Bridges

• Everything on SoC

• Fast memory much more complex

• Everything else we are going to learn about in this class.

10

Advanced CPUs

11

Some sample code

i n t i ;

i n t x [1 2 8] ;

f o r (i =0; i <128; i ++) {
x [i]=0;

}

How do you convert this to something the CPU

understands?

12

Roughly Equivelent Assembler
mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to x array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; want to write 0 to x[i]

str r3 ,[r1 ,r2] ; x[i]=0

add r0 ,r0 ,#1 ; i++

cmp r0 ,#128 ; is i==128?

bne loop ; if not , keep looping

; Note: can do lots of code hoisting here

.bss

.lcomm x ,128*4

13

An aside: how could you optimize this
code?

• Unroll the loop?

• Code hoisting (move the pointer load outside the loop)

• Use larger-sized writes (64-bit?)

• Use ARM barrel-shift addressing modes

• Crazy x86 instructions rep stosb

14

Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

Program Counter

Memory

+4

Address from

 ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

15

IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)

16

How can we increase IPC?

• Simple CPU must have cycles as slow as slowest

instruction

• What if we break instructions up to take multiple cycles?

• What if we could overlap them?

17

Pipelined CPUs

• 5-stage MIPS pipeline

• Have you ever used one? The first time I used UNIX:

MIPS R3000 in an SGI Personal Iris 4D/35

• Original Playstation

IF ID EX MEM WB

18

Pipelined CPUs

• IF = Instruction Fetch, Update PC

Fetch 32-bit instruction from L1-cache

• ID = Decode, Fetch Register

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

19

Cycle 1

IF mov r0,#0

ID

EX

MEM

WB

20

Cycle 2

IF ldr r1,=x

ID mov r0,#0

EX

MEM

WB

21

Cycle 3

IF lsl r2,r0,#2

ID ldr r1,=x

EX mov r0,#0

MEM

WB

22

Cycle 4

IF mov r3,#0

ID lsl r2,r0,#2

EX ldr r1,=x

MEM mov r0,#0

WB

23

Cycle 5

IF str r3,[r1,r2]

ID mov r3,#0

EX lsl r2,r0,#2

MEM ldr r1,=x

WB mov r0,#0

24

Benefits/Downside

• From 2-stage to Pentium 4 31-stage

• Latency higher (5 cycles) but average might be 1 cycle

• Why bother? Can you run the clock faster?

25

Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?
EX add r1,r0,r0

MEM ldr r0,[r1]

WB mov r1,r3

• WAR – “anti” dependency – not a problem if commit in

order

26

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

27

Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

28

Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

IF ???

ID beq

EX cmp r0,r1

29

Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

30

Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

EX add r1,r1,r0

MEM ldr r0,[r3]

31

The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

32

Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,

33

a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

34

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

35

